- map阶段
1. 使用job.setInputFormatClass(TextInputFormat)做为输入格式。注意输出应该符合自定义Map中定义的输出。
2. 进入Mapper的map()方法,生成一个List。
3. 在map阶段的最后,会先调用job.setPartitionerClass()对这个List进行分区,每个分区映射到一个reducer。
4. 每个分区内又调用job.setSortComparatorClass()设置的key比较函数类排序(如果没有通过job.setSortComparatorClass()设置key比较函数类,则使用key的实现的compareTo方法)。可以看到,这是一个二次排序。
5. 如果设置了Combiner(job.setCombinerClass)对output进行一次合并,从而减少对reduce的输出流量和预处理reduce的input数据。但不一定会执行,对于Combiner执行时机参考Reference[4]。
【说明】以上步骤省略了collect阶段、cache阶段等细节,更详细步骤参考Reference[3]
- reduce阶段
1. shuffle阶段
reducer开始fetch所有映射到这个reducer的map输出。
2.1 sort阶段
再次调用job.setSortComparatorClass()设置的key比较函数类对所有数据对排序(因为一个reducer接受多个mappers,需要重新排序)。
2.2 secondary sort阶段
然后开始构造一个key对应的value迭代器。这时就要用到分组,使用jobjob.setGroupingComparatorCla ss()设置的分组函数类。只要这个比较器比较的两个key相同,他们就属于同一个组,它们的value放在一个value迭代器,而这个迭代器的key使用属于同一个组的所有key的第一个key。
3.reduce阶段
最后就是进入Reducer的reduce()方法,reduce()方法的输入是所有的(key和它的value迭代器)。同样注意输入与输出的类型必须与自定义的Reducer中声明的一致。
【注意】reducers的输出是无序的。