• 微信公众号：美女很有趣。 工作之余，放松一下，关注即送10G+美女照片！

# 「XXI Opencup GP of Tokyo」 Count Min Ratio

2周前 (04-30) 3次浏览

[begin{aligned}
ans_x
=& sum_{b = 0}^{B}sum_{r = bx}^{R – (B-b)x}binom{r + b}{b}binom{R – r + B – b}{B – b} \
=& sum_{b = 0}^{B}sum_{d = 0}^{R – Bx}binom{(bx + d) + b}{b}binom{R – (bx + d) + B – b}{B – b} \
=& sum_{d = 0}^{R – Bx}sum_{b = 0}^{B}binom{(x + 1)b + d}{b}binom{(x + 1)(B – b) + (R – Bx – d)}{B – b} \
end{aligned}
]

(G(z) = frac{z}{(1 + z)^t})，则它的复合逆 (F(z) = mathcal B_t(z) – 1)。于是：

[binom{tb + d}{b}z^b = (1 + F)^dtimesfrac{1 + F}{1 – (t – 1)F}
]

[begin{aligned}
& sum_{d = 0}^{R – Bx}sum_{b = 0}^{B}binom{tb + d}{b}binom{t(B – b) + (R – Bx – d)}{B – b} \
=& sum_{d = 0}^{R – Bx}sum_{b = 0}^{B}left([z^b](1 + F)^dtimesfrac{1 + F}{1 + F – tF}right)left([z^{B-b}](1 + F)^{R – Bx – d}timesfrac{1 + F}{1 + F – tF}right) \
=& [z^B]sum_{d = 0}^{R – Bx}left((1 + F)^dtimesfrac{1 + F}{1 + F – tF}right)left((1 + F)^{R – Bx – d}timesfrac{1 + F}{1 + F – tF}right) \
=& (R – Bx + 1)left([z^B](1 + F)^{R – Bx}timesleft(frac{1 + F}{1 + F – tF}right)^2right) \
end{aligned}
]

[begin{aligned}
[z^B]H
=&[z^0]zHtimes G’G^{-B-1} \
=&[z^0]z(1 + z)^{R – Bx}timesleft(frac{1 + z}{1 – (t – 1)z}right)^2timesfrac{1 – (t – 1)z}{(1 + z)^{t + 1}}timesleft(frac{(1 + z)^{(B + 1)t}}{z^{B + 1}}right) \
=&[z^B]frac{(1 + z)^{(R – Bx) + 2 – (t + 1) + (B + 1)t}}{1 – (t – 1)z} \
=&[z^B]frac{(1 + z)^{R + B + 1}}{1 – xz} \
=&sum_{i = 0}^{B}binom{R + B + 1}{i}x^{B – i}
end{aligned}
]