• 微信公众号:美女很有趣。 工作之余,放松一下,关注即送10G+美女照片!

多线程

开发技术 开发技术 2周前 (04-07) 11次浏览

多线程即在同一时间,可以做多件事情。

创建多线程有3种方式,分别是继承线程类,实现Runnable接口,匿名类


启动一个线程

步骤1:线程概念

首先要理解进程(Processor)和线程(Thread)的区别
进程:启动一个LOL.exe就叫一个进程。 接着又启动一个DOTA.exe,这叫两个进程。
线程:线程是在进程内部同时做的事情,比如在LOL里,有很多事情要同时做,比如”盖伦” 击杀“提莫”,同时“赏金猎人”又在击杀“盲僧”,这就是由多线程来实现的。

此处代码演示的是不使用多线程的情况
只有在盖伦杀掉提莫后,赏金猎人才开始杀盲僧

多线程

package charactor;
 
import java.io.Serializable;
  
public class Hero{
    public String name;
    public float hp;
     
    public int damage;
     
    public void attackHero(Hero h) {
        try {
            //为了表示攻击需要时间,每次攻击暂停1000毫秒
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        h.hp-=damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n",name,h.name,h.name,h.hp);
         
        if(h.isDead())
            System.out.println(h.name +"死了!");
    }
 
    public boolean isDead() {
        return 0>=hp?true:false;
    }
 
}
package multiplethread;
 
import charactor.Hero;
 
public class TestThread {
 
    public static void main(String[] args) {
         
        Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
        gareen.damage = 50;
 
        Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 300;
        teemo.damage = 30;
         
        Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 500;
        bh.damage = 65;
         
        Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 455;
        leesin.damage = 80;
         
        //盖伦攻击提莫
        while(!teemo.isDead()){
            gareen.attackHero(teemo);
        }
 
        //赏金猎人攻击盲僧
        while(!leesin.isDead()){
            bh.attackHero(leesin);
        }
    }
     
}

步骤2:创建多线程-继承线程类

使用多线程,就可以做到盖伦在攻击提莫的同时,赏金猎人也在攻击盲僧
设计一个类KillThread 继承Thread并且重写run方法
启动线程办法: 实例化一个KillThread对象,并且调用其start方法
就可以观察到 赏金猎人攻击盲僧的同时,盖伦也在攻击提莫

多线程

package multiplethread;
 
import charactor.Hero;
 
public class KillThread extends Thread{
     
    private Hero h1;
    private Hero h2;
 
    public KillThread(Hero h1, Hero h2){
        this.h1 = h1;
        this.h2 = h2;
    }
 
    public void run(){
        while(!h2.isDead()){
            h1.attackHero(h2);
        }
    }
}
package multiplethread;
 
import charactor.Hero;
 
public class TestThread {
 
    public static void main(String[] args) {
         
        Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
        gareen.damage = 50;
 
        Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 300;
        teemo.damage = 30;
         
        Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 500;
        bh.damage = 65;
         
        Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 455;
        leesin.damage = 80;
         
        KillThread killThread1 = new KillThread(gareen,teemo);
        killThread1.start();
        KillThread killThread2 = new KillThread(bh,leesin);
        killThread2.start();
         
    }
     
}

步骤3:创建多线程-实现Runnable接口

创建类Battle,实现Runnable接口
启动的时候,首先创建一个Battle对象,然后再根据该battle对象创建一个线程对象,并启动

Battle battle1 = new Battle(gareen,teemo);

new Thread(battle1).start();

battle1 对象实现了Runnable接口,所以有run方法,但是直接调用run方法,并不会启动一个新的线程。
必须,借助一个线程对象的start()方法,才会启动一个新的线程。
所以,在创建Thread对象的时候,把battle1作为构造方法的参数传递进去,这个线程启动的时候,就会去执行battle1.run()方法了。

package multiplethread;
 
import charactor.Hero;
 
public class Battle implements Runnable{
     
    private Hero h1;
    private Hero h2;
 
    public Battle(Hero h1, Hero h2){
        this.h1 = h1;
        this.h2 = h2;
    }
 
    public void run(){
        while(!h2.isDead()){
            h1.attackHero(h2);
        }
    }
}
package multiplethread;
 
import charactor.Hero;
 
public class TestThread {
 
    public static void main(String[] args) {
         
        Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
        gareen.damage = 50;
 
        Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 300;
        teemo.damage = 30;
         
        Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 500;
        bh.damage = 65;
         
        Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 455;
        leesin.damage = 80;
         
        Battle battle1 = new Battle(gareen,teemo);
         
        new Thread(battle1).start();
 
        Battle battle2 = new Battle(bh,leesin);
        new Thread(battle2).start();
 
    }
     
}

步骤4:创建多线程匿名类

使用匿名类,继承Thread,重写run方法,直接在run方法中写业务代码
匿名类的一个好处是可以很方便的访问外部的局部变量。
前提是外部的局部变量需要被声明为final。(JDK7以后就不需要了)

package multiplethread;
  
import charactor.Hero;
  
public class TestThread {
  
    public static void main(String[] args) {
          
        Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
        gareen.damage = 50;
  
        Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 300;
        teemo.damage = 30;
          
        Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 500;
        bh.damage = 65;
          
        Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 455;
        leesin.damage = 80;
          
        //匿名类
        Thread t1= new Thread(){
            public void run(){
                //匿名类中用到外部的局部变量teemo,必须把teemo声明为final
                //但是在JDK7以后,就不是必须加final的了
                while(!teemo.isDead()){
                    gareen.attackHero(teemo);
                }              
            }
        };
         
        t1.start();
          
        Thread t2= new Thread(){
            public void run(){
                while(!leesin.isDead()){
                    bh.attackHero(leesin);
                }              
            }
        };
        t2.start();
         
    }
      
}

步骤5:创建多线程的三种方式

把上述3种方式再整理一下:

1. 继承Thread类
2. 实现Runnable接口
3. 匿名类的方式

注: 启动线程是start()方法,run()并不能启动一个新的线程


常见线程方法

关键字 简介 示例代码
sleep 当前线程暂停 示例代码
join 加入到当前线程中 示例代码
setPriority 线程优先级 示例代码
yield 临时暂停 示例代码
setDaemon 守护线程 示例代码

示例1:当前线程暂停

Thread.sleep(1000); 表示当前线程暂停1000毫秒 ,其他线程不受影响
Thread.sleep(1000); 会抛出InterruptedException 中断异常,因为当前线程sleep的时候,有可能被停止,这时就会抛出 InterruptedException

package multiplethread;
 
public class TestThread {
 
    public static void main(String[] args) {
         
        Thread t1= new Thread(){
            public void run(){
                int seconds =0;
                while(true){
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.printf("已经玩了LOL %d 秒%n", seconds++);
                }              
            }
        };
        t1.start();
         
    }
     
}

示例2:加入到当前线程当中

首先解释一下主线程的概念
所有进程,至少会有一个线程即主线程,即main方法开始执行,就会有一个看不见的主线程存在。
在42行执行t.join,即表明在主线程中加入该线程
主线程会等待该线程结束完毕, 才会往下运行。

package multiplethread;
  
import charactor.Hero;
  
public class TestThread {
  
    public static void main(String[] args) {          
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
        gareen.damage = 50;
  
        final Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 300;
        teemo.damage = 30;
          
        final Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 500;
        bh.damage = 65;
          
        final Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 455;
        leesin.damage = 80;
          
        Thread t1= new Thread(){
            public void run(){
                while(!teemo.isDead()){
                    gareen.attackHero(teemo);
                }              
            }
        };
          
        t1.start();
 
        //代码执行到这里,一直是main线程在运行
        try {
            //t1线程加入到main线程中来,只有t1线程运行结束,才会继续往下走
            t1.join();
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
 
        Thread t2= new Thread(){
            public void run(){
                while(!leesin.isDead()){
                    bh.attackHero(leesin);
                }              
            }
        };
        //会观察到盖伦把提莫杀掉后,才运行t2线程
        t2.start();     
    }  
}

示例3:线程优先级

当线程处于竞争关系的时候,优先级高的线程会有更大的几率获得CPU资源
为了演示该效果,要把暂停时间去掉,多条线程各自会尽力去占有CPU资源
同时把英雄的血量增加100倍,攻击减低到1,才有足够的时间观察到优先级的演示
如图可见,线程1的优先级是MAX_PRIORITY,所以它争取到了更多的CPU资源执行代码

package charactor;
  
import java.io.Serializable;
   
public class Hero{
    public String name;
    public float hp;
      
    public int damage;
      
    public void attackHero(Hero h) {
        //把暂停时间去掉,多条线程各自会尽力去占有CPU资源
        //线程的优先级效果才可以看得出来
//        try {
//           
//            Thread.sleep(0);
//        } catch (InterruptedException e) {
//            // TODO Auto-generated catch block
//            e.printStackTrace();
//        }
        h.hp-=damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n",name,h.name,h.name,h.hp);
          
        if(h.isDead())
            System.out.println(h.name +"死了!");
    }
  
    public boolean isDead() {
        return 0>=hp?true:false;
    }
  
}
package multiplethread;
  
import charactor.Hero;
  
public class TestThread {
  
    public static void main(String[] args) {
          
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 6160;
        gareen.damage = 1;
  
        final Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 3000;
        teemo.damage = 1;
          
        final Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 5000;
        bh.damage = 1;
          
        final Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 4505;
        leesin.damage = 1;
          
        Thread t1= new Thread(){
            public void run(){
 
                while(!teemo.isDead()){
                    gareen.attackHero(teemo);
                }              
            }
        };
          
        Thread t2= new Thread(){
            public void run(){
                while(!leesin.isDead()){
                    bh.attackHero(leesin);
                }              
            }
        };
         
        t1.setPriority(Thread.MAX_PRIORITY);
        t2.setPriority(Thread.MIN_PRIORITY);
        t1.start();
        t2.start();
          
    }
      
}

示例4:临时暂停

当前线程,临时暂停,使得其他线程可以有更多的机会占用CPU资源

package multiplethread;
  
import charactor.Hero;
  
public class TestThread {
  
    public static void main(String[] args) {
          
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 61600;
        gareen.damage = 1;
  
        final Hero teemo = new Hero();
        teemo.name = "提莫";
        teemo.hp = 30000;
        teemo.damage = 1;
          
        final Hero bh = new Hero();
        bh.name = "赏金猎人";
        bh.hp = 50000;
        bh.damage = 1;
          
        final Hero leesin = new Hero();
        leesin.name = "盲僧";
        leesin.hp = 45050;
        leesin.damage = 1;
          
        Thread t1= new Thread(){
            public void run(){
 
                while(!teemo.isDead()){
                    gareen.attackHero(teemo);
                }              
            }
        };
          
        Thread t2= new Thread(){
            public void run(){
                while(!leesin.isDead()){
                    //临时暂停,使得t1可以占用CPU资源
                    Thread.yield();
                     
                    bh.attackHero(leesin);
                }              
            }
        };
         
        t1.setPriority(5);
        t2.setPriority(5);
        t1.start();
        t2.start();     
    }
}

示例5:守护线程

守护线程的概念是: 当一个进程里,所有的线程都是守护线程的时候,结束当前进程。

就好像一个公司有销售部,生产部这些和业务挂钩的部门。
除此之外,还有后勤,行政等这些支持部门。

如果一家公司销售部,生产部都解散了,那么只剩下后勤和行政,那么这家公司也可以解散了。

守护线程就相当于那些支持部门,如果一个进程只剩下守护线程,那么进程就会自动结束。

守护线程通常会被用来做日志,性能统计等工作。

package multiplethread;
  
public class TestThread {
  
    public static void main(String[] args) {
          
        Thread t1= new Thread(){
            public void run(){
                int seconds =0;
                 
                while(true){
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.printf("已经玩了LOL %d 秒%n", seconds++);
                     
                }              
            }
        };
        t1.setDaemon(true);
        t1.start();
          
    }
      
}

同步

多线程的同步问题指的是多个线程同时修改一个数据的时候,可能导致的问题

多线程的问题,又叫Concurrency 问题


步骤1:演示同步问题

假设盖伦有10000滴血,并且在基地里,同时又被对方多个英雄攻击
就是有多个线程在减少盖伦的hp
同时又有多个线程在恢复盖伦的hp
假设线程的数量是一样的,并且每次改变的值都是1,那么所有线程结束后,盖伦应该还是10000滴血。
但是。。。

注意: 不是每一次运行都会看到错误的数据产生,多运行几次,或者增加运行的次数

package charactor;
  
public class Hero{
    public String name;
    public float hp;
     
    public int damage;
     
    //回血
    public void recover(){
        hp=hp+1;
    }
     
    //掉血
    public void hurt(){
        hp=hp-1;
    }
     
    public void attackHero(Hero h) {
        h.hp-=damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n",name,h.name,h.name,h.hp);
        if(h.isDead())
            System.out.println(h.name +"死了!");
    }
  
    public boolean isDead() {
        return 0>=hp?true:false;
    }
  
}
package multiplethread;
    
import charactor.Hero;
    
public class TestThread {
    
    public static void main(String[] args) {
            
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 10000;
           
        System.out.printf("盖伦的初始血量是 %.0f%n", gareen.hp);
           
        //多线程同步问题指的是多个线程同时修改一个数据的时候,导致的问题
           
        //假设盖伦有10000滴血,并且在基地里,同时又被对方多个英雄攻击
           
        //用JAVA代码来表示,就是有多个线程在减少盖伦的hp
        //同时又有多个线程在恢复盖伦的hp
           
        //n个线程增加盖伦的hp
           
        int n = 10000;
   
        Thread[] addThreads = new Thread[n];
        Thread[] reduceThreads = new Thread[n];
           
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                    gareen.recover();
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            addThreads[i] = t;
               
        }
           
        //n个线程减少盖伦的hp
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                    gareen.hurt();
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            reduceThreads[i] = t;
        }
           
        //等待所有增加线程结束
        for (Thread t : addThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        //等待所有减少线程结束
        for (Thread t : reduceThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
           
        //代码执行到这里,所有增加和减少线程都结束了
           
        //增加和减少线程的数量是一样的,每次都增加,减少1.
        //那么所有线程都结束后,盖伦的hp应该还是初始值
           
        //但是事实上观察到的是:
                   
        System.out.printf("%d个增加线程和%d个减少线程结束后%n盖伦的血量变成了 %.0f%n", n,n,gareen.hp);
           
    }
        
}

步骤2:分析同步问题产生的原因

1. 假设增加线程先进入,得到的hp是10000
2. 进行增加运算
3. 正在做增加运算的时候,还没有来得及修改hp的值减少线程来了
4. 减少线程得到的hp的值也是10000
5. 减少线程进行减少运算
6. 增加线程运算结束,得到值10001,并把这个值赋予hp
7. 减少线程也运算结束,得到值9999,并把这个值赋予hp
hp,最后的值就是9999
虽然经历了两个线程各自增减了一次,本来期望还是原值10000,但是却得到了一个9999
这个时候的值9999是一个错误的值,在业务上又叫做脏数据

多线程


步骤3:解决思路

总体解决思路是: 在增加线程访问hp期间,其他线程不可以访问hp
1. 增加线程获取到hp的值,并进行运算
2. 在运算期间,减少线程试图来获取hp的值,但是不被允许
3. 增加线程运算结束,并成功修改hp的值为10001
4. 减少线程,在增加线程做完后,才能访问hp的值,即10001
5. 减少线程运算,并得到新的值10000

多线程


步骤4:synchronized 同步对象概念

解决上述问题之前,先理解
synchronized关键字的意义
如下代码:

Object someObject =new Object();

synchronized (someObject){

//此处的代码只有占有了someObject后才可以执行

}

synchronized表示当前线程,独占 对象 someObject
当前线程独占 了对象someObject,如果有其他线程****试图占有对象someObject,就会等待,直到当前线程释放对someObject的占用。
someObject 又叫同步对象,所有的对象,都可以作为同步对象
为了达到同步的效果,必须使用同一个同步对象

释放同步对象的方式: synchronized 块自然结束,或者有异常抛出

多线程

package multiplethread;
  
import java.text.SimpleDateFormat;
import java.util.Date;
   
public class TestThread {
     
    public static String now(){
        return new SimpleDateFormat("HH:mm:ss").format(new Date());
    }
     
    public static void main(String[] args) {
        final Object someObject = new Object();
          
        Thread t1 = new Thread(){
            public void run(){
                try {
                    System.out.println( now()+" t1 线程已经运行");
                    System.out.println( now()+this.getName()+ " 试图占有对象:someObject");
                    synchronized (someObject) {
                          
                        System.out.println( now()+this.getName()+ " 占有对象:someObject");
                        Thread.sleep(5000);
                        System.out.println( now()+this.getName()+ " 释放对象:someObject");
                    }
                    System.out.println(now()+" t1 线程结束");
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        };
        t1.setName(" t1");
        t1.start();
        Thread t2 = new Thread(){
  
            public void run(){
                try {
                    System.out.println( now()+" t2 线程已经运行");
                    System.out.println( now()+this.getName()+ " 试图占有对象:someObject");
                    synchronized (someObject) {
                        System.out.println( now()+this.getName()+ " 占有对象:someObject");
                        Thread.sleep(5000);
                        System.out.println( now()+this.getName()+ " 释放对象:someObject");
                    }
                    System.out.println(now()+" t2 线程结束");
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        };
        t2.setName(" t2");
        t2.start();
    }
       
}

步骤5:使用使用synchronized 解决同步问题

所有需要修改hp的地方,有要建立在占有someObject的基础上
而对象 someObject在同一时间,只能被一个线程占有。 间接地,导致同一时间,hp只能被一个线程修改。

package multiplethread;
   
import java.awt.GradientPaint;
 
import charactor.Hero;
   
public class TestThread {
   
    public static void main(String[] args) {
 
        final Object someObject = new Object();
         
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 10000;
          
        int n = 10000;
  
        Thread[] addThreads = new Thread[n];
        Thread[] reduceThreads = new Thread[n];
          
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                     
                    //任何线程要修改hp的值,必须先占用someObject
                    synchronized (someObject) {
                        gareen.recover();
                    }
                     
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            addThreads[i] = t;
              
        }
          
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                    //任何线程要修改hp的值,必须先占用someObject
                    synchronized (someObject) {
                        gareen.hurt();
                    }
                     
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            reduceThreads[i] = t;
        }
          
        for (Thread t : addThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        for (Thread t : reduceThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
          
        System.out.printf("%d个增加线程和%d个减少线程结束后%n盖伦的血量是 %.0f%n", n,n,gareen.hp);
          
    }
       
}

步骤6:使用hero对象作为同步对象

既然任意对象都可以用来作为同步对象,而所有的线程访问的都是同一个hero对象,索性就使用gareen来作为同步对象
进一步的,对于Hero的hurt方法,加上:
synchronized (this) {
}
表示当前对象为同步对象,即也是gareen为同步对象

package multiplethread;
   
import java.awt.GradientPaint;
 
import charactor.Hero;
   
public class TestThread {
   
    public static void main(String[] args) {
 
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 10000;
          
        int n = 10000;
  
        Thread[] addThreads = new Thread[n];
        Thread[] reduceThreads = new Thread[n];
          
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                     
                    //使用gareen作为synchronized
                    synchronized (gareen) {
                        gareen.recover();
                    }
                     
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            addThreads[i] = t;
              
        }
          
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                    //使用gareen作为synchronized
                    //在方法hurt中有synchronized(this)
                    gareen.hurt();
                     
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            reduceThreads[i] = t;
        }
          
        for (Thread t : addThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        for (Thread t : reduceThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
          
        System.out.printf("%d个增加线程和%d个减少线程结束后%n盖伦的血量是 %.0f%n", n,n,gareen.hp);
          
    }
       
}
package charactor;
  
public class Hero{
    public String name;
    public float hp;
     
    public int damage;
     
    //回血
    public void recover(){
        hp=hp+1;
    }
     
    //掉血
    public void hurt(){
        //使用this作为同步对象
        synchronized (this) {
            hp=hp-1;   
        }
    }
     
    public void attackHero(Hero h) {
        h.hp-=damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n",name,h.name,h.name,h.hp);
        if(h.isDead())
            System.out.println(h.name +"死了!");
    }
  
    public boolean isDead() {
        return 0>=hp?true:false;
    }
  
}

步骤7:在方法前,加上修饰符synchronized

在recover前,直接加上synchronized ,其所对应的同步对象,就是this
和hurt方法达到的效果是一样
外部线程访问gareen的方法,就不需要额外使用synchronized 了

package charactor;
  
public class Hero{
    public String name;
    public float hp;
     
    public int damage;
     
    //回血
    //直接在方法前加上修饰符synchronized
    //其所对应的同步对象,就是this
    //和hurt方法达到的效果一样
    public synchronized void recover(){
        hp=hp+1;
    }
     
    //掉血
    public void hurt(){
        //使用this作为同步对象
        synchronized (this) {
            hp=hp-1;   
        }
    }
     
    public void attackHero(Hero h) {
        h.hp-=damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n",name,h.name,h.name,h.hp);
        if(h.isDead())
            System.out.println(h.name +"死了!");
    }
  
    public boolean isDead() {
        return 0>=hp?true:false;
    }
  
}
package multiplethread;
   
import java.awt.GradientPaint;
 
import charactor.Hero;
   
public class TestThread {
   
    public static void main(String[] args) {
 
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 10000;
          
        int n = 10000;
  
        Thread[] addThreads = new Thread[n];
        Thread[] reduceThreads = new Thread[n];
          
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                     
                    //recover自带synchronized
                    gareen.recover();
                     
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            addThreads[i] = t;
              
        }
          
        for (int i = 0; i < n; i++) {
            Thread t = new Thread(){
                public void run(){
                    //hurt自带synchronized
                    gareen.hurt();
                     
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            };
            t.start();
            reduceThreads[i] = t;
        }
          
        for (Thread t : addThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        for (Thread t : reduceThreads) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
          
        System.out.printf("%d个增加线程和%d个减少线程结束后%n盖伦的血量是 %.0f%n", n,n,gareen.hp);
          
    }
       
}

步骤8:线程安全的类

如果一个类,其方法都是有synchronized修饰的,那么该类就叫做线程安全的类

同一时间,只有一个线程能够进入 这种类的一个实例 的去修改数据,进而保证了这个实例中的数据的安全(不会同时被多线程修改而变成脏数据)

比如StringBuffer和StringBuilder的区别
StringBuffer的方法都是有synchronized修饰的,StringBuffer就叫做线程安全的类
而StringBuilder就不是线程安全的类

多线程


线程安全的类

常见的线程安全相关的面试


步骤1:HashMap和Hashtable的区别

HashMapHashtable都实现了Map接口,都是键值对保存数据的方式
区别1:
HashMap可以存放 null
Hashtable不能存放null
区别2:
HashMap不是线程安全的类
Hashtable是线程安全的类

多线程

多线程


步骤2:StringBuffer和StringBuilder的区别

StringBuffer 是线程安全的
StringBuilder 是非线程安全的

所以当进行大量字符串拼接操作的时候,如果是单线程就用StringBuilder会更快些,如果是多线程,就需要用StringBuffer 保证数据的安全性

非线程安全的为什么会比线程安全的 快? 因为不需要同步嘛,省略了些时间


步骤3:ArrayList和Vector的区别

ArrayList类的声明:

public class ArrayList<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, java.io.Serializable

Vector类的声明:

public class Vector<E> extends AbstractList<E>

implements List<E>, RandomAccess, Cloneable, java.io.Serializable

一模一样的~
他们的区别也在于,Vector是线程安全的类,而ArrayList是非线程安全的。


步骤4:把非线程安全的集合转换为线程安全

ArrayList是非线程安全的,换句话说,多个线程可以同时进入一个ArrayList对象的add方法

借助Collections.synchronizedList,可以把ArrayList转换为线程安全的List。

与此类似的,还有HashSet,LinkedList,HashMap等等非线程安全的类,都通过工具类Collections转换为线程安全的

package multiplethread;
 
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
 
public class TestThread {
    
    public static void main(String[] args) {
        List<Integer> list1 = new ArrayList<>();
        List<Integer> list2 = Collections.synchronizedList(list1);
    }
        
}

死锁

当业务比较复杂,多线程应用里有可能会发生死锁


步骤1:演示死锁

1. 线程1 首先占有对象1,接着试图占有对象2
2. 线程2 首先占有对象2,接着试图占有对象1
3. 线程1 等待线程2释放对象2
4. 与此同时,线程2等待线程1释放对象1
就会。。。一直等待下去,直到天荒地老.

多线程

package multiplethread;
   
import charactor.Hero;
    
public class TestThread {
      
    public static void main(String[] args) {
        final Hero ahri = new Hero();
        ahri.name = "九尾妖狐";
        final Hero annie = new Hero();
        annie.name = "安妮";
         
        Thread t1 = new Thread(){
            public void run(){
                //占有九尾妖狐
                synchronized (ahri) {
                    System.out.println("t1 已占有九尾妖狐");
                    try {
                        //停顿1000毫秒,另一个线程有足够的时间占有安妮
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                     
                    System.out.println("t1 试图占有安妮");
                    System.out.println("t1 等待中 。。。。");
                    synchronized (annie) {
                        System.out.println("do something");
                    }
                }  
                 
            }
        };
        t1.start();
        Thread t2 = new Thread(){
            public void run(){
                //占有安妮
                synchronized (annie) {
                    System.out.println("t2 已占有安妮");
                    try {
                         
                        //停顿1000毫秒,另一个线程有足够的时间占有暂用九尾妖狐
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                    System.out.println("t2 试图占有九尾妖狐");
                    System.out.println("t2 等待中 。。。。");
                    synchronized (ahri) {
                        System.out.println("do something");
                    }
                }  
                 
            }
        };
        t2.start();
   }
        
}

交互

线程之间有交互通知的需求,考虑如下情况:
有两个线程,处理同一个英雄。
一个加血,一个减血。

减血的线程,发现血量=1,就停止减血,直到加血的线程为英雄加了血,才可以继续减血


步骤1:不好的解决方式

故意设计减血线程频率更高,盖伦的血量迟早会到达1
减血线程中使用while循环判断是否是1,如果是1就不停的循环,直到加血线程回复了血量
这是不好的解决方式,因为会大量占用CPU,拖慢性能

package charactor;
   
public class Hero{
    public String name;
    public float hp;
      
    public int damage;
      
    public synchronized void recover(){
        hp=hp+1;
    }    
 
    public synchronized void hurt(){
            hp=hp-1;   
    }
      
    public void attackHero(Hero h) {
        h.hp-=damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n",name,h.name,h.name,h.hp);
        if(h.isDead())
            System.out.println(h.name +"死了!");
    }
   
    public boolean isDead() {
        return 0>=hp?true:false;
    }
   
}
package multiplethread;
    
import java.awt.GradientPaint;
  
import charactor.Hero;
    
public class TestThread {
    
    public static void main(String[] args) {
  
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
           
        Thread t1 = new Thread(){
            public void run(){
                while(true){
                     
                    //因为减血更快,所以盖伦的血量迟早会到达1
                    //使用while循环判断是否是1,如果是1就不停的循环
                    //直到加血线程回复了血量
                    while(gareen.hp==1){
                        continue;
                    }
                     
                    gareen.hurt();
                    System.out.printf("t1 为%s 减血1点,减少血后,%s的血量是%.0f%n",gareen.name,gareen.name,gareen.hp);
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
 
            }
        };
        t1.start();
 
        Thread t2 = new Thread(){
            public void run(){
                while(true){
                    gareen.recover();
                    System.out.printf("t2 为%s 回血1点,增加血后,%s的血量是%.0f%n",gareen.name,gareen.name,gareen.hp);
 
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
 
            }
        };
        t2.start();
           
    }
        
}

步骤2:使用wait和notify进行线程交互

在Hero类中:hurt()减血方法:当hp=1的时候,执行this.wait().
this.wait()表示 让占有this的线程等待,并临时释放占有
进入hurt方法的线程必然是减血线程,this.wait()会让减血线程临时释放对this的占有。 这样加血线程,就有机会进入recover()加血方法了

recover() 加血方法:增加了血量,执行this.notify();
this.notify() 表示通知那些等待在this的线程,可以苏醒过来了。 等待在this的线程,恰恰就是减血线程。 一旦recover()结束, 加血线程释放了this,减血线程,就可以重新占有this,并执行后面的减血工作。

多线程

package charactor;
 
public class Hero {
    public String name;
    public float hp;
 
    public int damage;
 
    public synchronized void recover() {
        hp = hp + 1;
        System.out.printf("%s 回血1点,增加血后,%s的血量是%.0f%n", name, name, hp);
        // 通知那些等待在this对象上的线程,可以醒过来了,如第20行,等待着的减血线程,苏醒过来
        this.notify();
    }
 
    public synchronized void hurt() {
        if (hp == 1) {
            try {
                // 让占有this的减血线程,暂时释放对this的占有,并等待
                this.wait();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
 
        hp = hp - 1;
        System.out.printf("%s 减血1点,减少血后,%s的血量是%.0f%n", name, name, hp);
    }
 
    public void attackHero(Hero h) {
        h.hp -= damage;
        System.out.format("%s 正在攻击 %s, %s的血变成了 %.0f%n", name, h.name, h.name, h.hp);
        if (h.isDead())
            System.out.println(h.name + "死了!");
    }
 
    public boolean isDead() {
        return 0 >= hp ? true : false;
    }
 
}
package multiplethread;
      
import java.awt.GradientPaint;
    
import charactor.Hero;
      
public class TestThread {
      
    public static void main(String[] args) {
    
        final Hero gareen = new Hero();
        gareen.name = "盖伦";
        gareen.hp = 616;
             
        Thread t1 = new Thread(){
            public void run(){
                while(true){
                       
                    //无需循环判断
//                    while(gareen.hp==1){
//                        continue;
//                    }
                       
                    gareen.hurt();
                     
                    try {
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
   
            }
        };
        t1.start();
   
        Thread t2 = new Thread(){
            public void run(){
                while(true){
                    gareen.recover();
   
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
   
            }
        };
        t2.start();
             
    }
          
}

步骤3:关于wait、notifyAll

留意wait()和notify() 这两个方法是什么对象上的?

public synchronized void hurt() {

。。。

this.wait();

。。。

}

public synchronized void recover() {

。。。

this.notify();

}

这里需要强调的是,wait方法和notify方法,并不是Thread线程上的方法,它们是Object上的方法。

因为所有的Object都可以被用来作为同步对象,所以准确的讲,wait和notify是同步对象上的方法。

wait()的意思是: 让占用了这个同步对象的线程,临时释放当前的占用,并且等待。 所以调用wait是有前提条件的,一定是在synchronized块里,否则就会出错。

notify() 的意思是,通知一个等待在这个同步对象上的线程,可以苏醒过来了,有机会重新占用当前对象了。

notifyAll() 的意思是,通知所有的等待在这个同步对象上的线程,你们可以苏醒过来了,有机会重新占用当前对象了。


步骤4:生产者消费者问题

生产者消费者问题是一个非常典型性的线程交互的问题。

1. 使用栈来存放数据
1.1 把栈改造为支持线程安全
1.2 把栈的边界操作进行处理,当栈里的数据是0的时候,访问pull的线程就会等待。 当栈里的数据是200的时候,访问push的线程就会等待
2. 提供一个生产者(Producer)线程类,生产随机大写字符压入到堆栈
3. 提供一个消费者(Consumer)线程类,从堆栈中弹出字符并打印到控制台
4. 提供一个测试类,使两个生产者和三个消费者线程同时运行,结果类似如下 :

多线程

package multiplethread;
   
import java.util.ArrayList;
import java.util.LinkedList;
   
public class MyStack<T> {
   
    LinkedList<T> values = new LinkedList<T>();
       
    public synchronized void push(T t) {
        while(values.size()>=200){
            try {
                this.wait();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        this.notifyAll();
        values.addLast(t);
         
    }
   
    public synchronized T pull() {
        while(values.isEmpty()){
            try {
                this.wait();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        this.notifyAll();
        return values.removeLast();
    }
   
    public T peek() {
        return values.getLast();
    }
}
package multiplethread;
 
public class ProducerThread extends Thread{
 
    private MyStack<Character> stack;
 
    public ProducerThread(MyStack<Character> stack,String name){
        super(name);
        this.stack =stack;
    }
     
    public void run(){
         
        while(true){
            char c = randomChar();
            System.out.println(this.getName()+" 压入: " + c);
            stack.push(c);
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
         
    }
     
    public char randomChar(){
        return (char) (Math.random()*('Z'+1-'A') + 'A');
    }
     
}
package multiplethread;
 
public class ConsumerThread extends Thread{
 
    private MyStack<Character> stack;
 
    public ConsumerThread(MyStack<Character> stack,String name){
        super(name);
        this.stack =stack;
    }
     
    public void run(){
         
        while(true){
            char c = stack.pull();
            System.out.println(this.getName()+" 弹出: " + c);
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
         
    }
     
    public char randomChar(){
        return (char) (Math.random()*('Z'+1-'A') + 'A');
    }
     
}
package multiplethread;
 
public class TestThread {
       
    public static void main(String[] args) {
        MyStack<Character> stack = new MyStack<>();
        new ProducerThread(stack, "Producer1").start();
        new ProducerThread(stack, "Producer2").start();
        new ConsumerThread(stack, "Consumer1").start();
        new ConsumerThread(stack, "Consumer2").start();
        new ConsumerThread(stack, "Consumer3").start();
                           
    }
           
}

线程池

每一个线程的启动和结束都是比较消耗时间和占用资源的。

如果在系统中用到了很多的线程,大量的启动和结束动作会导致系统的性能变卡,响应变慢。

为了解决这个问题,引入线程池这种设计思想。

线程池的模式很像生产者消费者模式,消费的对象是一个一个的能够运行的任务


步骤1:线程池设计思路

线程池的思路和生产者消费者模型是很接近的。
1. 准备一个任务容器
2. 一次性启动10个 消费者线程
3. 刚开始任务容器是空的,所以线程都wait在上面。
4. 直到一个外部线程往这个任务容器中扔了一个“任务”,就会有一个消费者线程被唤醒notify
5. 这个消费者线程取出“任务”,并且执行这个任务,执行完毕后,继续等待下一次任务的到来。
6. 如果短时间内,有较多的任务加入,那么就会有多个线程被唤醒,去执行这些任务。

在整个过程中,都不需要创建新的线程,而是循环使用这些已经存在的线程

多线程


步骤2:开发一个自定义线程池

这是一个自定义的线程池,虽然不够完善和健壮,但是已经足以说明线程池的工作原理

缓慢的给这个线程池添加任务,会看到有多条线程来执行这些任务。
线程7执行完毕任务后,又回到池子里,下一次任务来的时候,线程7又来执行新的任务。

package multiplethread;
  
import java.util.LinkedList;
  
public class ThreadPool {
  
    // 线程池大小
    int threadPoolSize;
  
    // 任务容器
    LinkedList<Runnable> tasks = new LinkedList<Runnable>();
  
    // 试图消费任务的线程
  
    public ThreadPool() {
        threadPoolSize = 10;
  
        // 启动10个任务消费者线程
        synchronized (tasks) {
            for (int i = 0; i < threadPoolSize; i++) {
                new TaskConsumeThread("任务消费者线程 " + i).start();
            }
        }
    }
  
    public void add(Runnable r) {
        synchronized (tasks) {
            tasks.add(r);
            // 唤醒等待的任务消费者线程
            tasks.notifyAll();
        }
    }
  
    class TaskConsumeThread extends Thread {
        public TaskConsumeThread(String name) {
            super(name);
        }
  
        Runnable task;
  
        public void run() {
            System.out.println("启动: " + this.getName());
            while (true) {
                synchronized (tasks) {
                    while (tasks.isEmpty()) {
                        try {
                            tasks.wait();
                        } catch (InterruptedException e) {
                            // TODO Auto-generated catch block
                            e.printStackTrace();
                        }
                    }
                    task = tasks.removeLast();
                    // 允许添加任务的线程可以继续添加任务
                    tasks.notifyAll();
  
                }
                System.out.println(this.getName() + " 获取到任务,并执行");
                task.run();
            }
        }
    }
  
}
package multiplethread;
 
public class TestThread {
       
    public static void main(String[] args) {
        ThreadPool pool = new ThreadPool();
  
        for (int i = 0; i < 5; i++) {
            Runnable task = new Runnable() {
                @Override
                public void run() {
                    //System.out.println("执行任务");
                    //任务可能是打印一句话
                    //可能是访问文件
                    //可能是做排序
                }
            };
             
            pool.add(task);
             
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
  
    }
           
}

步骤3:测试线程池

创造一个情景,每个任务执行的时间都是1秒
刚开始是间隔1秒钟向线程池中添加任务

然后间隔时间越来越短,执行任务的线程还没有来得及结束,新的任务又来了。
就会观察到线程池里的其他线程被唤醒来执行这些任务

package multiplethread;
  
public class TestThread {
    public static void main(String[] args) {
        ThreadPool pool= new ThreadPool();
        int sleep=1000;
        while(true){
            pool.add(new Runnable(){
                @Override
                public void run() {
                    //System.out.println("执行任务");
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        // TODO Auto-generated catch block
                        e.printStackTrace();
                    }
                }
            });
            try {
                Thread.sleep(sleep);
                sleep = sleep>100?sleep-100:sleep;
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
              
        }
          
    }
}

步骤4:使用java自带线程池

java提供自带的线程池,而不需要自己去开发一个自定义线程池了。

线程池类ThreadPoolExecutor在包java.util.concurrent

ThreadPoolExecutor threadPool= new ThreadPoolExecutor(10, 15, 60, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());

第一个参数10 表示这个线程池初始化了10个线程在里面工作
第二个参数15 表示如果10个线程不够用了,就会自动增加到最多15个线程
第三个参数60 结合第四个参数TimeUnit.SECONDS,表示经过60秒,多出来的线程还没有接到活儿,就会回收,最后保持池子里就10个
第四个参数TimeUnit.SECONDS 如上
第五个参数 new LinkedBlockingQueue() 用来放任务的集合

execute方法用于添加新的任务

package multiplethread;
   
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
   
public class TestThread {
   
    public static void main(String[] args) throws InterruptedException {
           
        ThreadPoolExecutor threadPool= new ThreadPoolExecutor(10, 15, 60, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>());
           
        threadPool.execute(new Runnable(){
   
            @Override
            public void run() {
                // TODO Auto-generated method stub
                System.out.println("任务1");
            }
               
        });
   
    }
   
}

Lock对象

与synchronized类似的,lock也能够达到同步的效果

步骤1:回忆synchronized同步的方式

首先回忆一下 [synchronized 同步对象](#步骤4:synchronized 同步对象概念)的方式

当一个线程占用 synchronized 同步对象,其他线程就不能占用了,直到释放这个同步对象为止

多线程

package multiplethread;
   
import java.text.SimpleDateFormat;
import java.util.Date;
    
public class TestThread {
      
    public static String now(){
        return new SimpleDateFormat("HH:mm:ss").format(new Date());
    }
      
    public static void main(String[] args) {
        final Object someObject = new Object();
           
        Thread t1 = new Thread(){
            public void run(){
                try {
                    System.out.println( now()+" t1 线程已经运行");
                    System.out.println( now()+this.getName()+ " 试图占有对象:someObject");
                    synchronized (someObject) {
                           
                        System.out.println( now()+this.getName()+ " 占有对象:someObject");
                        Thread.sleep(5000);
                        System.out.println( now()+this.getName()+ " 释放对象:someObject");
                    }
                    System.out.println(now()+" t1 线程结束");
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        };
        t1.setName(" t1");
        t1.start();
        Thread t2 = new Thread(){
   
            public void run(){
                try {
                    System.out.println( now()+" t2 线程已经运行");
                    System.out.println( now()+this.getName()+ " 试图占有对象:someObject");
                    synchronized (someObject) {
                        System.out.println( now()+this.getName()+ " 占有对象:someObject");
                        Thread.sleep(5000);
                        System.out.println( now()+this.getName()+ " 释放对象:someObject");
                    }
                    System.out.println(now()+" t2 线程结束");
                } catch (InterruptedException e) {
                    // TODO Auto-generated catch block
                    e.printStackTrace();
                }
            }
        };
        t2.setName(" t2");
        t2.start();
    }
        
}

步骤2:使用Lock对象实现同步效果

Lock是一个接口,为了使用一个Lock对象,需要用到

Lock lock = new ReentrantLock();

synchronized (someObject) 类似的,lock()方法,表示当前线程占用lock对象,一旦占用,其他线程就不能占用了。
synchronized 不同的是,一旦synchronized 块结束,就会自动释放对someObject的占用。 lock却必须调用unlock方法进行手动释放,为了保证释放的执行,往往会把unlock() 放在finally中进行。

package multiplethread;
 
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
 
public class TestThread {
 
    public static String now() {
        return new SimpleDateFormat("HH:mm:ss").format(new Date());
    }
 
    public static void log(String msg) {
        System.out.printf("%s %s %s %n", now() , Thread.currentThread().getName() , msg);
    }
 
    public static void main(String[] args) {
        Lock lock = new ReentrantLock();
 
        Thread t1 = new Thread() {
            public void run() {
                try {
                    log("线程启动");
                    log("试图占有对象:lock");
 
                    lock.lock();
 
                    log("占有对象:lock");
                    log("进行5秒的业务操作");
                    Thread.sleep(5000);
 
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    log("释放对象:lock");
                    lock.unlock();
                }
                log("线程结束");
            }
        };
        t1.setName("t1");
        t1.start();
        try {
            //先让t1飞2秒
            Thread.sleep(2000);
        } catch (InterruptedException e1) {
            // TODO Auto-generated catch block
            e1.printStackTrace();
        }
        Thread t2 = new Thread() {
 
            public void run() {
                try {
                    log("线程启动");
                    log("试图占有对象:lock");
 
                    lock.lock();
 
                    log("占有对象:lock");
                    log("进行5秒的业务操作");
                    Thread.sleep(5000);
 
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    log("释放对象:lock");
                    lock.unlock();
                }
                log("线程结束");
            }
        };
        t2.setName("t2");
        t2.start();
    }
 
}

多线程


步骤3:trylock方法

synchronized 是不占用到手不罢休的,会一直试图占用下去。
与 synchronized 的钻牛角尖不一样,Lock接口还提供了一个trylock方法。
trylock会在指定时间范围内试图占用,占成功了,就啪啪啪。 如果时间到了,还占用不成功,扭头就走~

注意: 因为使用trylock有可能成功,有可能失败,所以后面unlock释放锁的时候,需要判断是否占用成功了,如果没占用成功也unlock,就会抛出异常

多线程

package multiplethread;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class TestThread13 {
    public static String now() {
        return new SimpleDateFormat("HH:mm:ss").format(new Date());
    }

    public static void log(String msg) {
        System.out.printf("%s %s %s %n", now() , Thread.currentThread().getName() , msg);
    }

    public static void main(String[] args) {
        Lock lock = new ReentrantLock();

        Thread t1 = new Thread() {
            public void run() {
                boolean locked = false;
                try {
                    log("线程启动");
                    log("试图占有对象:lock");

                    locked = lock.tryLock(1, TimeUnit.SECONDS);
                    if(locked){
                        log("占有对象:lock");
                        log("进行5秒的业务操作");
                        Thread.sleep(5000);
                    }
                    else{
                        log("经过1秒钟的努力,还没有占有对象,放弃占有");
                    }

                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {

                    if(locked){
                        log("释放对象:lock");
                        lock.unlock();
                    }
                }
                log("线程结束");
            }
        };
        t1.setName("t1");
        t1.start();
        try {
            //先让t1飞2秒
            Thread.sleep(2000);
        } catch (InterruptedException e1) {
            // TODO Auto-generated catch block
            e1.printStackTrace();
        }
        Thread t2 = new Thread() {

            public void run() {
                boolean locked = false;
                try {
                    log("线程启动");
                    log("试图占有对象:lock");

                    locked = lock.tryLock(1,TimeUnit.SECONDS);
                    if(locked){
                        log("占有对象:lock");
                        log("进行5秒的业务操作");
                        Thread.sleep(5000);
                    }
                    else{
                        log("经过1秒钟的努力,还没有占有对象,放弃占有");
                    }

                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {

                    if(locked){
                        log("释放对象:lock");
                        lock.unlock();
                    }
                }
                log("线程结束");
            }
        };
        t2.setName("t2");
        t2.start();
    }
}


步骤4:线程交互

使用synchronized方式进行线程交互,用到的是同步对象的wait,notify和notifyAll方法

Lock也提供了类似的解决办法,首先通过lock对象得到一个Condition对象,然后分别调用这个Condition对象的:await, signal,signalAll 方法

注意: 不是Condition对象的wait,nofity,notifyAll方法,是await,signal,signalAll

多线程

package multiplethread;

import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class TestThread14 {

        public static String now() {
            return new SimpleDateFormat("HH:mm:ss").format(new Date());
        }

        public static void log(String msg) {
            System.out.printf("%s %s %s %n", now() , Thread.currentThread().getName() , msg);
        }

        public static void main(String[] args) {
            Lock lock = new ReentrantLock();
            Condition condition = lock.newCondition();

            Thread t1 = new Thread() {
                public void run() {
                    try {
                        log("线程启动");
                        log("试图占有对象:lock");

                        lock.lock();

                        log("占有对象:lock");
                        log("进行5秒的业务操作");
                        Thread.sleep(5000);
                        log("临时释放对象 lock, 并等待");
                        condition.await();
                        log("重新占有对象 lock,并进行5秒的业务操作");
                        Thread.sleep(5000);

                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        log("释放对象:lock");
                        lock.unlock();
                    }
                    log("线程结束");
                }
            };
            t1.setName("t1");
            t1.start();
            try {
                //先让t1飞2秒
                Thread.sleep(2000);
            } catch (InterruptedException e1) {
                // TODO Auto-generated catch block
                e1.printStackTrace();
            }
            Thread t2 = new Thread() {

                public void run() {
                    try {
                        log("线程启动");
                        log("试图占有对象:lock");

                        lock.lock();

                        log("占有对象:lock");
                        log("进行5秒的业务操作");
                        Thread.sleep(5000);
                        log("唤醒等待中的线程");
                        condition.signal();

                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        log("释放对象:lock");
                        lock.unlock();
                    }
                    log("线程结束");
                }
            };
            t2.setName("t2");
            t2.start();
        }

    }


步骤5:总结Lock和synchronized的区别

1. Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现,Lock是代码层面的实现。

2. Lock可以选择性的获取锁,如果一段时间获取不到,可以放弃。synchronized不行,会一根筋一直获取下去。 借助Lock的这个特性,就能够规避死锁,synchronized必须通过谨慎和良好的设计,才能减少死锁的发生。

3. synchronized在发生异常和同步块结束的时候,会自动释放锁。而Lock必须手动释放, 所以如果忘记了释放锁,一样会造成死锁。


原子访问


步骤1:原子性操作概念

所谓的原子性操作即不可中断的操作,比如赋值操作

int i = 5;

原子性操作本身是线程安全的
但是 i++ 这个行为,事实上是有3个原子性操作组成的。
步骤 1. 取 i 的值
步骤 2. i + 1
步骤 3. 把新的值赋予i
这三个步骤,每一步都是一个原子操作,但是合在一起,就不是原子操作。就不是线程安全的。
换句话说,一个线程在步骤1 取i 的值结束后,还没有来得及进行步骤2,另一个线程也可以取 i的值了。
这也是分析同步问题产生的原因 中的原理。
i++ ,i–, i = i+1 这些都是非原子性操作。
只有int i = 1,这个赋值操作是原子性的。


步骤2:AtomicInteger

JDK6 以后,新增加了一个包java.util.concurrent.atomic,里面有各种原子类,比如AtomicInteger
而AtomicInteger提供了各种自增,自减等方法,这些方法都是原子性的。 换句话说,自增方法 incrementAndGet 是线程安全的,同一个时间,只有一个线程可以调用这个方法。

package multiplethread;
   
import java.util.concurrent.atomic.AtomicInteger;
   
public class TestThread {
   
    public static void main(String[] args) throws InterruptedException {
        AtomicInteger atomicI =new AtomicInteger();
        int i = atomicI.decrementAndGet();
        int j = atomicI.incrementAndGet();
        int k = atomicI.addAndGet(3);
         
    }
   
}

步骤3:同步测试

分别使用基本变量的非原子性的++运算符和 原子性的AtomicInteger对象的 incrementAndGet 来进行多线程测试。
测试结果如图所示

package multiplethread;
 
import java.util.concurrent.atomic.AtomicInteger;
 
public class TestThread {
    
    private static int value = 0;
    private static AtomicInteger atomicValue =new AtomicInteger();
    public static void main(String[] args) {
        int number = 100000;
        Thread[] ts1 = new Thread[number];
        for (int i = 0; i < number; i++) {
            Thread t =new Thread(){
                public void run(){
                    value++;
                }
            };
            t.start();
            ts1[i] = t;
        }
         
        //等待这些线程全部结束
        for (Thread t : ts1) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
         
        System.out.printf("%d个线程进行value++后,value的值变成:%d%n", number,value);
        Thread[] ts2 = new Thread[number];
        for (int i = 0; i < number; i++) {
            Thread t =new Thread(){
                public void run(){
                    atomicValue.incrementAndGet();
                }
            };
            t.start();
            ts2[i] = t;
        }
         
        //等待这些线程全部结束
        for (Thread t : ts2) {
            try {
                t.join();
            } catch (InterruptedException e) {
                // TODO Auto-generated catch block
                e.printStackTrace();
            }
        }
        System.out.printf("%d个线程进行atomicValue.incrementAndGet();后,atomicValue的值变成:%d%n", number,atomicValue.intValue());
    }
        
}

多线程


程序员灯塔
转载请注明原文链接:多线程
喜欢 (0)