• 微信公众号:美女很有趣。 工作之余,放松一下,关注即送10G+美女照片!

HDOJ 1032

开发技术 开发技术 4小时前 2次浏览

题目链接https://acm.hdu.edu.cn/showproblem.php?pid=1032

题目描述

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

Consider the following algorithm:

1. input n

2. print n

3. if n = 1 then STOP

4. if n is odd then n <- 3n + 1

5. else n <- n / 2

6. GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

因为题目数据很水,所以暴力15ms过。

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;

int x, y, ans;

int main() {
    while (scanf("%d%d", &x, &y) != EOF) {
        printf("%d %d ", x, y);
        if(x > y)    swap(x, y);
        ans = 0;
        for(int i = x; i <= y; ++i){
            ll s = i;
            int cnt = 1;
            while(s != 1){
                if(s % 2)    s = s * 3 + 1;
                else s = s >> 1;
                ++cnt;
            }
            ans = ans > cnt ? ans : cnt;
        }
        printf("%dn", ans);
    }
    return 0;
}

因为一开始不知道数据怎么水,所以想了一个记忆化的做法。

虽然题目给定的n < 1000000, 但在运算中会出现大于1000000的数造成数组越界,所以在记忆化的过程中要对大于1000000的数要特别处理。

#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;

const int N = 1e6 + 10;

int x, y, ans;
int a[N];

inline void init() {
    a[1] = 1, a[2] = 2;
}

inline bool judge(ll x) {
    if (x < N)
        if (a[(int)x])    return 1;
    return 0;
}

int GT(int t) {
    if (t <= 2)    return t;
    if (t > N) {
        ll s = t;
        int cnt = 1;
        while (s) {
            if (judge(s)) return a[(int)s] + cnt - 1;
            if (s % 2)    s = s * 3 + 1;
            else s = s >> 1;
            ++cnt;
        }
        return a[s] + cnt;
    }
    if (t % 2)    a[t] = GT(t * 3 + 1) + 1;
    else a[t] = GT(t >> 1) + 1;
    return a[t];
}

int main() {
    init();
    while (scanf("%d%d", &x, &y) != EOF) {
        printf("%d %d ", x, y);
        ans = 0;
        if (x > y) swap(x, y);
        for (int i = x; i <= y; ++i) {
            if(!a[i]) a[i] = GT(i);
            ans = ans > a[i] ? ans : a[i];
        }
        printf("%dn", ans);
    }
    return 0;
}

因为n <= 1000000时最大次数是525次,所以面对极限数据时可以预处理1~1000000,在加st表优化查询,这样理论上可以得到约等于

[O(10^2 * n + log_2n)
]

)

另外附上大佬的线段树做法https://blog.csdn.net/cowboy90/article/details/14225693


程序员灯塔
转载请注明原文链接:HDOJ 1032
喜欢 (0)