• 微信公众号:美女很有趣。 工作之余,放松一下,关注即送10G+美女照片!

Educational Codeforces Round 1 题解

开发技术 开发技术 4小时前 1次浏览

A. Tricky Sum

居然没有一眼秒掉。。自闭了

1 到 n 的和很好算,小于等于 n 的所有 2 的幂次之和也很好算,把后面那个东西减两次就做完了。

一遍 AC。

int main() {
    std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    int T; cin >> T;
    while (T --> 0) {
        int n; cin >> n;
        lli ans = (1ll * n) * 1ll * (n + 1); ans >>= 1;
        for (int i = 0; i <= 30; ++i) {
            if ((1 << i) <= n) ans -= (1 << (i + 1));
        } cout << ans << endl;
    }
    return 0;
}

B. Queries on a String

直接模拟即可。循环写起来可能有些不便,拿 deque 暴力模拟也能过。

一遍 AC。

const int MAXN = 10000 + 10;

int m;
char ss[MAXN];
char tt[MAXN];

void Process(int l, int r, int k) {
    std::deque<char> s;
    for (int i = l; i <= r; ++i) {
        s.push_back(ss[i]);
    }
    for (int i = 1; i <= k; ++i) {
        s.push_front(s.back());
        s.pop_back();
    }
    for (int i = l; i <= r; ++i) {
        ss[i] = s.front(); s.pop_front();
    }
}
int main() {
    std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> (ss + 1); cin >> m;
    rep (i, 1, m) {
        int l, r, k; cin >> l >> r >> k;
        k %= (r - l + 1);
        Process(l, r, k);
    }
    cout << ss + 1 << endl;
    return 0;
}

C. Nearest Vectors

使用 atan2 函数计算方位角,按照方位角排序后相邻的计算一下角度,更新答案即可。

#错误警示:调了一场没调出来,后来发现调用 abs(x) 而不是 std::abs(x) 居然会重载成 int abs(int x)

const int MAXN = 100000 + 10;

struct T {
    long double x; int id; T() {x = id = 0;};
    
    bool operator < (const T &th) const {
        return x < th.x;
    }
} ts[MAXN];

int n;

int main() {
    std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    scanf("%d", &n);
    rep (i, 1, n) {
        int x, y; scanf("%d %d", &x, &y); ts[i].id = i;
        ts[i].x = atan2((long double) y, (long double) x);
    } std::sort(ts + 1, ts + 1 + n);
    
    ts[++n] = ts[1];
    long double ang = 1e15;
    long double pi = acos((long double) -1);
    int ans1 = 0, ans2 = 0;
    for (int i = 1; i <= n - 1; ++i) {
        long double relangle = std::abs(ts[i + 1].x - ts[i].x);
        if (relangle > pi) relangle = pi * 2.0 - relangle;
        if (relangle < ang) {
            ang = relangle; ans1 = ts[i].id, ans2 = ts[i + 1].id;
        }
    } cout << ans1 << ' ' << ans2 << endl;
    return 0;
}

D. Igor In the Museum

拿并查集维护联通块,联通块内的答案相同,然后 BFS 求答案即可。

一遍 AC。
#错误警示:搜索的时候一定不要忘了记录是否访问过。

const int MAXN = 1000 + 10;
const int dx[] = {1, -1, 0, 0};
const int dy[] = {0, 0, -1, 1};

int n, m, k;

char ss[MAXN][MAXN];
int ans[MAXN * MAXN];
bool vis[MAXN][MAXN];

struct DSU {
    int fa[MAXN * MAXN];
    int Find(int x) {
        return !fa[x] ? x : fa[x] = Find(fa[x]);
    }
    void Merge(int x, int y) {
        x = Find(x); y = Find(y);
        if (x != y) fa[x] = y;
    }
} dsu;

int gid(int x, int y) {
    return (x - 1) * m + y;
}
struct ND { int x, y; };
int search(int x, int y) {
    std::queue<ND> q;
    q.push({x, y});
    int ans = 0;
    while (!q.empty()) {
        int ux = q.front().x, uy = q.front().y; q.pop();
        if (vis[ux][uy]) continue;
        vis[ux][uy] = true;
        for (int dr = 0; dr <= 3; ++dr) {
            int nx = ux + dx[dr], ny = uy + dy[dr];
            if (nx < 1 || ny < 1 || nx > n || ny > m) continue;
            // std::cerr << nx << '-' << ny << endl;
            if (ss[nx][ny] == '*') ++ans;
            else q.push({nx, ny});
        }
    } return ans;
}

int main() {
    std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> n >> m >> k;
    rep (i, 1, n) {
        cin >> (ss[i] + 1);
        rep (j, 1, m) {
            if (ss[i][j] == '.') rep (dr, 0, 3) {
                int nx = i + dx[dr], ny = j + dy[dr];
                if (nx < 1 || ny < 1 || nx > n || ny > m) continue;
                if (ss[nx][ny] == '.') {
                    dsu.Merge(gid(i, j), gid(nx, ny));
                }
            }
        }
    }
    for (int i = 1; i <= k; ++i) {
        int fx, fy; cin >> fx >> fy;
        int ansid = dsu.Find(gid(fx, fy));
        if (!ans[ansid]) ans[ansid] = search(fx, fy);
        cout << ans[ansid] << endl;
    }
    return 0;
}  

或者你甚至可以不用并查集维护连通性,先扫一遍矩阵,遇到点的时候就做一遍 dfs 求出每个点属于哪个联通块和答案,最后 (O(1)) 输出,写起来更舒服一些。

一遍 AC。

const int MAXN = 1000 + 10;
const int dx[] = {0, 0, 1, -1};
const int dy[] = {1, -1, 0, 0};

int n, m, k;
char ss[MAXN][MAXN];
int bel[MAXN][MAXN], cnt, aans[MAXN * MAXN];

int ans = 0;
void dfs(int x, int y, int bl) {
    if (bel[x][y]) return;
    bel[x][y] = bl;
    for (int dr = 0; dr < 4; ++dr) {
        int nx = x + dx[dr], ny = y + dy[dr];
        if (nx < 1 || ny < 1 || nx > n || ny > m) continue;
        if (ss[nx][ny] == '*') ++ans;
        else dfs(nx, ny, bl);
    }
}
int main() {
    std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    cin >> n >> m >> k;
    rep (i, 1, n) {
        cin >> (ss[i] + 1);
    }
    rep (i, 1, n) {
        rep (j, 1, m) {
            if (ss[i][j] == '.') {
                ++cnt; ans = 0; dfs(i, j, cnt);
                aans[cnt] = ans;
            }
        }
    }
    rep (i, 1, k) {
        int x, y; cin >> x >> y; cout << aans[bel[x][y]] << endl;
    }
    return 0;
}

E. Chocolate Bar

记忆化搜索。设 f[i][j][k] 表示现在我有一个 (itimes j) 的巧克力块,要从中选取大小为 (k) 的最小花费。

转移直接枚举在哪一行 / 列下刀,以及从这一块中要拿走的大小。

看似时间复杂度是 (O(Tnmk)) 的,但实际上记忆化数组可以复用,并不需要每组数据都清空。

#错误警示:好好处理边界条件,想想 0 到底能不能取到。

const int MAXN = 30 + 10;
const int MAXK = 50 + 10;

lli dp[MAXN][MAXN][MAXK];

lli search(int a, int b, int c) {
    if (c == 0) return 0;
    if (c == a * b) return 0;
    if (dp[a][b][c] != -1) return dp[a][b][c];
    dp[a][b][c] = (1ll << 60);
    for (int x = 1; x < a; ++x) {
        for (int p = 0; p <= c; ++p) {
            dp[a][b][c] = std::min(dp[a][b][c], search(a - x, b, p) + search(x, b, c - p) + 1ll * b * b);
        }
    }
    for (int x = 1; x < b; ++x) {
        for (int p = 0; p <= c; ++p) {
            dp[a][b][c] = std::min(dp[a][b][c], search(a, b - x, p) + search(a, x, c - p) + 1ll * a * a);
        }
    }
    return dp[a][b][c];
}

int main() {
    std::ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    int T; cin >> T;
    memset(dp, -1, sizeof dp);
    while (T --> 0) {
        int n, m, k; cin >> n >> m >> k;
        cout << search(n, m, k) << endl;
    }
    return 0;
}

程序员灯塔
转载请注明原文链接:Educational Codeforces Round 1 题解
喜欢 (0)