一道积分不等式的证明
题目:
设 (f(x,y)) 在 (D={(x,y)|x^2+y^2 le 1}) 上有连续的偏导数,且在 (T={(x,y)|x^2+y^2=1}) 上恒为 (0),证明:
[left| iintlimits_D f(x, y)dx right| le frac{pi}{3}maxlimits_{(x,y)in D}left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}} ]
分析
考虑到不等式右边的形式类似于向量模长,尝试使用 (Cauchy-Schwarz) 不等式:
[|(x, y)| le | x | cdot | y |
]
证明
首先对 (text{LHS}) 中被积表达进行代换( 约定 (0le rle 1) ):
[begin{aligned}
|f(x, y)| &= |f(rcos theta, r sin theta)| \
&= left|int_r^1 left( frac{part f}{part x}cos theta+frac{part f}{part y}sin theta right) dtright| \
&le int_r^1 left|left( frac{part f}{part x}cos theta+frac{part f}{part y}sin theta right)right| dt \
&le int_r^1 left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}}dt int_r^1[cos^2theta+sin^2theta]dt \
&= (1-r) int_r^1 left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}}dt \
&le (1-r) int_0^1 left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}}dt \
&=(1-r) maxlimits_{(x,y)in D}left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}}\
end{aligned}
]
将上述不等式代入 (text{LHS}) 化简:
[begin{aligned}
text{LHS} &= left| int_0^{2pi}int_0^1 rcdot f(rcostheta, rsintheta)drdtheta right| \
&le left| int_0^{2pi}int_0^1 rcdot (1-r) maxlimits_{(x,y)in D}left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}} drdtheta right| \
&= left| int_0^{2pi}int_0^1 (r-r^2)drdtheta right| cdot maxlimits_{(x,y)in D}left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}} \
&= frac{pi}{3} maxlimits_{(x,y)in D}left[ left(frac{part f}{part x}right)^2+left(frac{part f}{part y}right)^2 right]^{frac{1}{2}} = text{RHS}\
end{aligned}
]
QED.