• 微信公众号:美女很有趣。 工作之余,放松一下,关注即送10G+美女照片!

[源码解析] PyTorch 分布式(10)——DistributedDataParallel 之 Reducer静态架构

开发技术 开发技术 3小时前 2次浏览

[源码解析] PyTorc++h 分布式(10)——DistributedDataParallel之Reducer静态架构

目录
  • [源码解析] PyTorc++h 分布式(10)——DistributedDataParallel之Reducer静态架构
    • 0x00 摘要
    • 0x01 引论
      • 1.1 调用
    • 0x02 Reducer 定义
    • 0x03 Bucket
      • 3.1 设计
      • 3.2 定义
        • 3.2.1 BucketReplica有几个
        • 3.2.2 关键
        • 3.2.3 具体定义
      • 3.3 设置
    • 0x03 BucketReplica
      • 3.1 Views
      • 3.2 定义
      • 3.3 初始化
    • 0x04 查询类
      • 4.1 VariableIndex
        • 4.1.1 成员变量
        • 4.1.2 定义
      • 4.2 VariableLocator
        • 4.2.1 定义
        • 4.2.2 成员变量
          • 4.2.2.1 初始化
          • 4.2.2.2 使用
    • 0x05 累积相关类
      • 5.1 grad_accumulators_
        • 5.1.1 初始化
        • 5.1.2 使用
      • 5.2 gradAccToVariableMap_
        • 5.2.1 初始化
        • 5.2.2 使用
      • 5.3 numGradHooksTriggeredMap_
        • 5.3.1 初始化
        • 5.3.2 使用
      • 5.4 numGradHooksTriggeredMapPerIteration_
        • 5.4.1 使用
      • 5.5 perIterationReadyParams_
        • 5.5.1 设置
        • 5.5.2 重置
        • 5.5.3 使用
      • 5.6 使用过的参数
        • 5.6.1 论文
        • 5.6.2 初始化
        • 5.6.3 重置
        • 5.6.4 设置
        • 5.6.5 使用
      • 5.7 计算梯度支撑类
        • 5.7.1 RpcContext
        • 5.7.2 hooks_
        • 5.7.3 comm_hook_
          • 5.7.3.1 概念
          • 5.7.3.2 使用
        • 5.7.4 runGradCallbackForVariable
          • 5.7.4.1 Reducer
          • 5.7.4.2 DistAutogradContext
    • 0xFF 参考

0x00 摘要

通过上文分析,我们已经知道了 DDP 的基本架构和如何初始化,本文就看看其核心 Reducer 的静态架构。Reducer提供了反向传播中梯度同步的核心实现。

本系列其他文章如下:

深度学习利器之自动微分(1)

深度学习利器之自动微分(2)

[源码解析]深度学习利器之自动微分(3) — 示例解读

[源码解析]PyTorch如何实现前向传播(1) — 基础类(上)

[源码解析]PyTorch如何实现前向传播(2) — 基础类(下)

[源码解析] PyTorch如何实现前向传播(3) — 具体实现

[源码解析] Pytorch 如何实现后向传播 (1)—- 调用引擎

[源码解析] Pytorch 如何实现后向传播 (2)—- 引擎静态结构

[源码解析] Pytorch 如何实现后向传播 (3)—- 引擎动态逻辑

[源码解析] PyTorch 如何实现后向传播 (4)—- 具体算法

[源码解析] PyTorch 分布式(1)——历史和概述

[源码解析] PyTorch 分布式(2) —– DataParallel(上)

[源码解析] PyTorch 分布式(3) —– DataParallel(下)

[源码解析] PyTorch 分布式(4)——分布式应用基础概念

[源码解析] PyTorch分布式(5) —— DistributedDataParallel 总述&如何使用

[源码解析] PyTorch分布式(6) —DistributedDataParallel — 初始化&store

[源码解析] PyTorch 分布式(7) —– DistributedDataParallel 之进程组

[源码解析] PyTorch 分布式(8) ——– DistributedDataParallel之论文篇

[源码解析] PyTorch 分布式(9) —– DistributedDataParallel 之初始化

0x01 引论

1.1 调用

Reducer 的创建代码如下,是在_ddp_init_helper 之中。

        # Note: reverse list of buckets because we want to approximate the
        # order in which their gradients are produced, and assume they
        # are used in the forward pass in the order they are defined.
        self.reducer = dist.Reducer(
            parameters, # parameters[0]是张量列表
            list(reversed(bucket_indices)), # 桶信息
            self.process_group,
            expect_sparse_gradient,
            self.bucket_bytes_c++ap,
            self.find_unused_parameters,
            self.gradient_as_bucket_view,
            param_to_name_mapping,
        )

调用的 parameters 举例如下, parameters[0] 就是 rank 0 上模型的 parameters,可以看到其只有 [0] 元素有意义,这个 [0] 原始本身包括 20 个元素:

parameters = {list: 1} 
0 = {list: 4}           
 0 = {Parameter: 10} Parameter containing:ntensor([[-4.0381e-02,  3.8828e-02, 1  )   
 1 = {Parameter: 10} Parameter containing:ntensor([-0.0438, -0.2033,  0.2771,  0.0721,  ) 
 2 = {Parameter: 5} Parameter containing:ntensor([[-0.0094, -0.1319,  0.0713,  0.3155,  )
 3 = {Parameter: 5} Parameter containing:ntensor([-0.0008,  0.0582, -0.1245, -0.2538, )
 ...
 20 = {Parameter: 5} Parameter containing:ntensor([-0.0008,  0.0582, -0.1245, -0.2538, )                                                   
 __len__ = {int} 20
__len__ = {int} 1

bucket_indices 举例如下:

关于 tensor indices,就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()。假如模型的 parameters 一共有20个张量,则 tensor index 从 0 到 19,分成 6 个buckets,则在这6个buckets之中,每个 tensor index 都是唯一不重复的。

+-----------------------------------------------------------------------+
|                                                                       |
|  <tensor index 0, tensor index 1, tensor index 2, tensor index 3>     |
|                                                                       |
|                                                                       |
|  <tensor index 4, tensor index 5, tensor 6>                           |
|                                                                       |
|                                                                       |
|  ......                                                               |
|                                                                       |
|                                                                       |
|  <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
|                                                                       |
+-----------------------------------------------------------------------+

python代码无意义,我们只能看看C++。

class Reducer(__pybind11_builtins.pybind11_object):
    def __init__(self, replicas, *args, **kwargs): 
        """ __init__(self: torch._C._distributed_c10d.Reducer, replicas: List[List[at::Tensor]], bucket_indices: List[List[int]], process_group: c10d::ProcessGroup, expect_sparse_gradients: List[List[bool]] = [], bucket_bytes_c++ap: int = 26214400, find_unused_parameters: bool = False, gradient_as_bucket_view: bool = False, param_to_name_mapping: Dict[int, str] = {}) -> None """
        pass

于是我们来到了 torch/lib/c10d/reducer.h 和 torch/lib/c10d/reducer.cpp。

0x02 Reduc++er 定义

Reducer提供了反向传播中梯度同步的核心实现,其定义相当复杂,我们甚至需要去掉一些不重要的成员变量以便展示:

class Reducer {
 public:
  // The constructor takes a list of variables for every model replica.
  // The bucket assignment for this reducer is specified as a list of
  // buckets, each of which is specified as a list of indices into the
  // variables list for **a single replica** (i.e. `variables[0]`).
  explicit Reducer(
      std::vector<std::vector<at::Tensor>> replicas,
      std::vector<std::vector<size_t>> bucket_indices,
      c10::intrusive_ptr<c10d::ProcessGroup> process_group,
      std::vector<std::vector<bool>> expect_sparse_gradients,
      int64_t bucket_bytes_c++ap,
      bool find_unused_parameters,
      bool gradient_as_bucket_view,
      std::unordered_map<size_t, std::string>
          paramNames);

 protected:
  // Forward declaration.
  struct Bucket;

  void push_rebuilt_params(const VariableIndex& index);

  mutable std::mutex mutex_;
  const std::vector<std::vector<at::Tensor>> replicas_;
  const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_;
  std::vector<std::vector<bool>> expect_sparse_gradients_;

  std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
      grad_accumulators_;
  std::unordered_map<torch::autograd::Node*, VariableIndex>
      gradAccToVariableMap_;
  std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
      hooks_;

  bool expect_autograd_hooks_;
  bool require_finalize_;
  size_t next_bucket_;

  bool has_marked_unused_parameters_;
  const bool find_unused_parameters_;
  const bool gradient_as_bucket_view_;
  std::vector<VariableIndex> unused_parameters_; // 如果没有用到,直接设置为就绪,第一次迭代之后久不会改变了
  // Locally used parameter maps indicating if parameters are used locally
  // during the current iteration or no_sync session if no_sync is on. One
  // tensor for each model replica and each tensor is one-dim int32 tensor of
  // number of parameters. These tensors are marked in autograd_hook to indicate
  // the corresponding param has been used, and get allreduced in the end of
  // backward of current iteration or no_sync session for figuring out the
  // globally unused parameters.
  //
  // local_used_maps_:     CPU tensors for bookkeeping locally used params
  // local_used_maps_dev_: dev tensors for reducing globally unused params
  std::vector<at::Tensor> local_used_maps_;
  std::vector<at::Tensor> local_used_maps_dev_;
  // Indicate that reduction is done and D2H copy is done as well.
  bool local_used_maps_reduced_;

  using GradCallback =
      torch::distributed::autograd::DistAutogradContext::GradCallback;

  // A bucket replica represents [1..N] gradients to be reduced,
  // with the same dtype, on the same device.
  //
  // Batching gradients together before reducing them can result in lower
  // overhead and/or faster time to completion. Only gradients of the same type
  // and on the same device can be batched. The tensor that represents the
  // flattened gradient uses the same type and is placed on the same device.
  // Buckets are filled as the gradients they hold are computed (triggered by
  // autograd hooks). Buckets are reduced in a predetermined order that is
  // identical across processes.
  struct BucketReplica {
    // Flattened (1 dimensional) contents of bucket.
    at::Tensor contents;

    // Views into contents for each grad.  Each view will be created with
    // layout (sizes + strides) matching the grad's expected layout
    // ("Gradient Layout Contract" in torch/csrc/autograd/AccumulateGrad.h).
    // `bucket_views_in[i].copy_(grad)` and
    // `grad.copy_(bucket_views_out[i])`
    // provide convenient ways to move grad data in/out of contents.
    // The reason we keep two states for bucket_views is that if DDP
    // communication hook was registered, `bucket_views_out` could be
    // re-initialized with the value of hook's `future_work`. We still need to
    // keep a separate view reference to replica's original contents for
    // `bucket_views_in[i].copy_(grad)` call.
    std::vector<at::Tensor> bucket_views_in;
    std::vector<at::Tensor> bucket_views_out;

    // Variables that contribute to this bucket replica. Use refcounted value
    // here so that we can easily unflatten the bucket contents into the
    // participating variables after reduction has completed.
    std::vector<at::Tensor> variables;

    // Per-variable offset/length into the flat bucket contents tensor and grad
    // bucket.
    std::vector<size_t> offsets;
    std::vector<size_t> lengths;

    // Per-variable sizes into the grad bucekt.
    std::vector<c10::IntArrayRef> sizes_vec;

    // Number of tensors to be added before this bucket is complete.
    // This is reset to `variables.size()` every iteration.
    size_t pending;

    // TODO(@pietern)
    // Memory copies from gradient tensors into the bucket are potentially
    // done on different CUDA streams. We record an event for every copy
    // so that we can synchronize with them prior to kicking off the reduction.
    // std::vector<at::cuda::CUDAEvent> events;
  };
  // A bucket holds N bucket replicas (1 per model replica).
  //
  // If every bucket in this struct is ready, the reduction can be kicked off.
  // One bucket per replica. Reduction is kicked off when every bucket is ready.
  //
  struct Bucket {
    std::vector<BucketReplica> replicas;

    // Global indices of participating variables in the bucket
    std::vector<size_t> variable_indices;

    // Number of replicas to be marked done before this bucket is ready.
    size_t pending;

    // Keep work handle around when this set of buckets is being reduced.
    c10::intrusive_ptr<c10d::ProcessGroup::Work> work;

    // Keep future work handle around if DDP comm hook is registered.
    c10::intrusive_ptr<torch::jit::Future> future_work;

    // If this bucket should expect a single sparse gradient.
    // Implies: replicas[i].variables.size() == 1.
    bool expect_sparse_gradient = false;
  };

  std::vector<Bucket> buckets_;

  // A variable locator locates a particular variable in the bucket
  // structure. The `bucket_index` field points to the bucket in the `buckets_`
  // vector. The `intra_bucket_index` field points to the index of the variable
  // in any of the vector fields in the bucket replica.
  struct VariableLocator {
    // Index into the `buckets_` variable.
    size_t bucket_index;
    // Index of parameter in single bucket replica.
    size_t intra_bucket_index;

    VariableLocator() = default;

    VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
      bucket_index = bucket_index_;
      intra_bucket_index = intra_bucket_index_;
    }
  };

  // Map the index of a variable to its location in the bucket structure.
  std::vector<VariableLocator> variable_locators_;

  // track the number of iterations to synchronize grads in training so far.
  long num_iterations_;
  // track the number of buckets that have been ready for
  // communication calls like allReduce or communication hooks.
  int num_buckets_ready_;

  // We collect the relative timestamp of every gradient being ready
  // when executing autograd. This can be used to derive a timeline of
  // the point in time buckets were ready, or ideal bucket assignment/ordering.
  std::vector<std::vector<int64_t>> backward_stats_;

  int ddp_runtime_logging_sample_rate_ = kDDPRuntimeLoggingSampleRate;

  bool is_multi_device_module_ = false;

  // Following variables are to help build dynamic bucket order
  bool has_rebuilt_bucket_;
  std::vector<at::Tensor> rebuilt_params_;
  std::vector<int64_t> rebuilt_param_indices_;
  const int64_t bucket_bytes_c++ap_;

  struct RpcContext {
    using ContextPtr = torch::distributed::autograd::ContextPtr;
    // The shared_ptr is to hold the context instance.
    ContextPtr context_ptr_holder;
    std::atomic<ContextPtr::element_type*> context_ptr{nullptr};

    void set(ContextPtr&& new_context_ptr);
  };
  RpcContext rpc_context_;

  // A struct containing work handle and tensor for allreduce scheduled in
  // forward pass, if applicable.
  struct ForwardPassAllreduceWork {
    c10::intrusive_ptr<c10d::ProcessGroup::Work> workHandle;
    at::Tensor resultTensor;
    // whether we should divide by the initial world_size or the no. of
    // remaining DDP ranks.
    bool useStaticWorldSize;
  };

  // Handle for the currently scheduled allreduce in the forward pass, if
  // applicable.
  ForwardPassAllreduceWork forwardPassWorkHandle_;

  // Division factor for reduction of gradients.
  int divFactor_;

  bool static_graph_;

  // Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
  // should be triggered before marking this variable's grad as ready for communication.
  // Map will not change after 1st iteration.
  std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMap_;
  // Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
  // are left to be triggered before marking this variable's grad as ready for communication.
  // Map will change after 1st iteration to track a grad is ready for communication or not.
  std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMapPerIteration_;

 private:
  // comm_hook_ is used to access the DDP communication hook if registered.
  std::unique_ptr<CommHookInterface> comm_hook_;
  // Current thread local state
  at::ThreadLocalState thread_local_state_;
  // Debug level setting. It is parsed once when Reducer is constructed, and
  // remains the same across a single invocation of DDP training.
  DistributedDebugLevel ddp_debug_level_;
  // Mapping of variable index to fully qualified name of model to notify users
  // about errors when certain parameters do not get gradient.
  std::unordered_map<size_t, std::string> param_names_;
  // Per iteration set of parameter indices that have been marked ready.
  std::unordered_set<size_t> perIterationReadyParams_;
  // Retrieves parameter names that have not been marked as ready as part of
  // previous iteration.
  std::vector<std::string> getUnmarkedParamsForIteration();
  // Retrives parameter indices that have not been marked as ready as part of
  // previous iteration.
  std::vector<size_t> getUnmarkedParamIndicesForIteration();
  // Raises appropriate error if mark_variable_ready is called on the same
  // variable twice, which is unexpected.
  void checkAndRaiseMarkedTwiceError(size_t curVariableIndex);

  friend class Logger;
};

Reducer 的关键成员变量如下。

  std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
      grad_accumulators_; // 对应的 index 存了相应的 grad_accumulator,就是 tensor index对应的grad_accumulator
  std::unordered_map<torch::autograd::Node*, VariableIndex>
      gradAccToVariableMap_; // 存了grad_accumulator & index 的对应关系,这样以后在 autograd graph 寻找 unused parameters 就方便了
  std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
      hooks_;

  std::vector<Bucket> buckets_;

  const std::vector<std::vector<at::Tensor>> replicas_; // 传入的张量
  const c10::intrusive_ptr<::c10d::ProcessGroup> process_group_; // 进程组

我们接下来一一分析这些成员变量。

0x03 Buc++ket

3.1 设计

在规约梯度之前将梯度批处理在一起可以降低开销和/或加快完成时间。但是只能对同一设备上相同类型的梯度进行批处理。

桶是梯度的集合,统一设备上相同类型的梯度被放到同一个桶之中。在代码之中,Bucket 就是桶的概念。

在每次向后传播中,将所有参数梯度中的张量复制到桶中,并在AllReduc++e之后将平均梯度复制回桶中。为了加速复制操作,存储桶始终与参数在同一设备上创建。如果模型跨越多个设备,DDP会考虑设备关联性,以确保同一存储桶中的所有参数都位于同一设备上。AllReduce的顺序也会对结果产生影响,因为它决定了多少通信可以与计算重叠。DDP按model.parameters()的相反顺序启动AllReduce

3.2 定义

3.2.1 Buc++ketReplica有几个

为了更好的说明,我们首先要分析一下 BucketReplica 是什么。我们从注释出发看看。

首先,一个桶 Bucket 有多个BucketReplica,每一个模型对应一个BucketReplica。

// A bucket holds N bucket replicas (1 per model replica).

但是只用了一个 [0] 元素,因为目前不支持单进程多设备模式,所以假定桶里只有一个replica。

    GradBucket grad_bucket(
        next_bucket_,
        tensors[0],
        // 这里的注释指明了不支持 SPMD
        // Since currently we do not support single-process multiple-device
        // mode, we can assume only one replica in the bucket.
        bucket.replicas[0].offsets,
        bucket.replicas[0].lengths,
        bucket.replicas[0].sizes_vec);
    bucket.future_work = comm_hook_->runHook(grad_bucket);

再结合前文代码,未来不会支持 SPMD。parameters 就是 [ToyModel] 这个模型列表的参数集合,parameters[0] 就是 ToyModel 的参数

    # 下面注释指明了未来也不会支持 SPMD
    # TODO(wayi@): Remove this field since SPMD is no longer supported,
    # and also remove all the relevant unnecessary loops.
    # Module replication within process (single-process multi device)
    
    self._module_copies = [self.module] # 构建一个比如 [ToyModel] 这样的列表
    # Build parameters for reducer.
    parameters, expect_sparse_gradient = self._build_params_for_reducer()

综合以上我们知道:

  • DDP 原来是希望像 DP 那样支持 SPMD,所以本进程就需要维护多个 GPU 之上的多个模型副本的参数,即,parameters 就是一个数组,数组中每个元素是一个模型副本的参数。
  • parameters 被赋值为 Reducer.replicas_,而 Reducer.replicas_ 用来赋值给 bucket.replicas。
  • 因为未来不支持Reducer.replicas_,所以只有 parameters[0] 有意义。

所以我们得出结论:

  • BucketReplica 就是一个模型的待求梯度参数组。replica 对应一个 device (GPU)上的模型副本的参数信息(部分),即,一个 replica 代表了 [1..N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。
  • 事实上,只有 bucket.replicas[0] 有意义,就对应了上面代码中的 [self.module] 之中的部分需求导张量,就是 parameters[0] 。

3.2.2 关键

我们再总结一下 Bucket 的关键:

  • replicas 成员变量就是 bucket 对应的各个BucketReplica。一个 BucketReplica 代表了 [1..N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。

    • 只有 bucket.replicas[0] 有意义,就对应了本模型的待求梯度参数组之中本bucket对应的张量
    • 如何赋值?就是使用 Reducer.replicas_ 来赋值,而 replicas_ 就是参数 parameters。我们下面就会介绍。
  • variable_indices 成员变量用来记录本桶之中有哪些variable 的index。

    如何赋值?使用前面介绍的 bucket_indices 进行赋值。

    bucket.variable_indices = std::move(bucket_indices[bucket_index]);
    

    如何使用?intra_bucket_index 是bucket.variable_indices的序号,利用序号得到真正的variable index。后文会依据代码再进行阐释。

    size_t variable_index = bucket.variable_indices[intra_bucket_index];
    

3.2.3 具体定义

最后,Bucket 具体定义如下:

  // A bucket holds N bucket replicas (1 per model replica).
  //
  // If every bucket in this struct is ready, the reduction can be kicked off.
  // One bucket per replica. Reduction is kicked off when every bucket is ready.
  //
  struct Bucket {
    std::vector<BucketReplica> replicas;// 每个模型副本对应一个桶

    // Global indices of participating variables in the bucket
    std::vector<size_t> variable_indices; // 具体每个桶里面有哪些 variable。

    // Number of replicas to be marked done before this bucket is ready.
    size_t pending; // 计数,

    // Keep work handle around when this set of buckets is being reduced.
    c10::intrusive_ptr<c10d::ProcessGroup::Work> work;

    // Keep future work handle around if DDP comm hook is registered.
    c10::intrusive_ptr<torch::jit::Future> future_work;

    // If this bucket should expect a single sparse gradient.
    // Implies: replicas[i].variables.size() == 1.
    bool expect_sparse_gradient = false;
  };

3.3 设置

Reducer 的成员变量buckets_ 是关键,这是Reducer 之中所有的桶。

std::vector<Bucket> buckets_;

在初始化函数中有如何初始化 buckets_,核心是:

  • 找到本bucket在 bucket_indices 之中的 index。
  • 在 parameters 之中找到 index 对应的张量。
  • 在 BucketReplica 之中配置这些张量,就是本bucket应该规约的张量。
void Reducer::initialize_buckets(
    std::vector<std::vector<size_t>> bucket_indices) {
  
  buckets_.reserve(bucket_count);
  
  for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) {
    Bucket bucket;
    
    // Variables that expect sparse gradients must have their own bucket.
    if (bucket_indices[bucket_index].size() == 1) {
      const auto variable_index = bucket_indices[bucket_index].front();
      bucket.expect_sparse_gradient = // 设置 bucket
          expect_sparse_gradients_[0][variable_index];
    }     
    // Iterate over model replicas.
    for (size_t replica_index = 0; replica_index < replica_count;
         replica_index++) {
      
      BucketReplica replica; // 设置replica

      if (bucket.expect_sparse_gradient) {
        const auto variable_index = bucket_indices[bucket_index].front();
        // 找到index对应的tensor
        const auto& variable = replicas_[replica_index][variable_index];
        replica.variables = {variable};
      } else {

        // Iterate over bucket variables.
        for (const auto variable_index : bucket_indices[bucket_index]) {
          // 找到index对应的tensor
          const auto& variable = replicas_[replica_index][variable_index];
          if (!options.has_device()) {
            options = options.device(variable.device());
          } 
          if (!options.has_dtype()) {
            options = options.dtype(variable.dtype());
          } 
          
          const auto length = variable.numel();
          replica.variables.push_back(variable); // 插入张量
          replica.offsets.push_back(offset);
          replica.lengths.push_back(length);
          replica.sizes_vec.push_back(variable.sizes());
          offset += length;
        }

        // Allocate bucket contents tensor.
         initialize_bucket_views(replica, replica.contents);
      }

      // Add bucket replica to enclosing bucket.
      bucket.replicas.push_back(std::move(replica)); // 配置bucket
    }   
    
    bucket.variable_indices = std::move(bucket_indices[bucket_index]);
    buckets_.push_back(std::move(bucket)); //插入桶列表
  }  
}

用图例表示如下,这里假设 bucket index 是 1,即第 2 个桶,所以 variable_indices 对应了 bucket_indices 中的相应部分。比如 BucketReplica[0] 里面是 Tensor 4,5,6,而variable_indices就是 Tensor 4,5,6 分别的 index。

下图中的 bucket_indices 是 Reducer 构造函数的参数之一。

+--------------------------------+   +------------------------------------+
|Reducer                         |   |                                    |
|                                |   |bucket 0, bucket 1, ...... bucket n |
|      vector<Bucket> buckets_ +---> |    +                               |
|                                |   |    |                               |
+--------------------------------+   +------------------------------------+
                                          |
                          +---------------+              +------------------------------+
                          |                         +--> | Tensor 4, Tensor 5, Tensor 6 |
                          |                         |    +------------------------------+
                          |                         |
                          v                   +-----------------------------------------+
+-------------------------+-----------+       |     |                                   |
| Bucket                              |       | +---+-----------+     +---------------+ |
|                                     |       | | BucketReplica |     | BucketReplica | |
|                                     |       | |               | ... |               | |
|   vector<BucketReplica> replicas +--------> | +---------------+     +---------------+ |
|                                     |       +-----------------------------------------+
|                                     |
|   vector<size_t> variable_indices +------->  <tensor index 4, tensor index 5, tensor 6>
|                                     |
+-------------------------------------+





bucket_indices    +-----------------------------------------------------------------------+
     +            |                                                                       |
     |            |  <tensor index 0, tensor index 1, tensor index 2, tensor index 3>     |
     |            |                                                                       |
     +----------> |                                                                       |
                  |  <tensor index 4, tensor index 5, tensor 6>                           |
                  |                                                                       |
                  |                                                                       |
                  |  ......                                                               |
                  |                                                                       |
                  |                                                                       |
                  |  <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
                  |                                                                       |
                  +-----------------------------------------------------------------------+


0x03 Buc++ketReplica

如前面讨论的,一个 BucketReplica 代表了 [1..N] 个需要被规约的梯度,这些梯度拥有同样的 dtype,位于同样的设备上。是一个模型待求梯度参数的一部分,具体是哪些,由 bucket 的 variable_indices 决定。

其关键成员变量为:

  • std::vector<at::Tensor> variables 是构成此bucket副本的variable。我们在这里使用refcounted value,这样我们就可以在完成规约之后,轻松地将bucket内容 unflatten 到参与变量中。
  • at::Tensor contents :把桶的内容展平的结果,即Flattened (1 dimensional) 之后的结果。
  • std::vector<at::Tensor> bucket_views_in :提供了从输入角度在 contents 之中查看具体梯度的方法。
  • std::vector<at::Tensor> bucket_views_out :提供了从输出角度在 contents 之中查看具体梯度的方法。

具体可以参见如下注释:

Views serve as entry points to copy_ each grad's data in/out of the flat contents tensor.

3.1 Views

关于 std::vector<at::Tensor> bucket_views_instd::vector<at::Tensor> bucket_views_out 的进一步说明:

  • 在 PyTorch 之中,视图是指创建一个方便查看的东西,视图与原数据共享内存,它只是将原有的数据进行整理,直接显示其中部分内容或者进行重排序后再显示出来。
  • 每个 view 都将按照如下布局(sizes + strides)创建,这个布局与grad的预期布局相匹配。
  • bucket_views_in 和 bucket_views_out 这两个变量提供在 contents 之中操作具体梯度的方法,或者说,它们提供了视图(views),该视图可以操作contents 之中每个张量的梯度。用户把这两个变量作为入口点来把每个梯度的数据从 content 之中移入和移出。
  • 我们为bucket_视图保留两种状态的原因是:如果注册了DDP通信钩子(communication hook), bucket_views_out 可以用钩子的 future_work值重新初始化。所以我们需要为bucket_views_in[i].copy_(grad) 保留一个对 replica 原始 contents 的单独视图引用。
  • bucket_views_in[i].copy_(grad)grad.copy_(bucket_views_out[i]) 提供了将梯度数据移入/移出contents的方便方法。

另外,以下三个成员变量存储桶的每个flat张量信息,比如offsets存储了各个张量在flat bucket contents中的offset。

// Per-variable offset/length into the flat bucket contents tensor and grad
// bucket.
std::vector<size_t> offsets;
std::vector<size_t> lengths;
// Per-variable sizes into the grad bucekt.
std::vector<c10::IntArrayRef> sizes_vec;

3.2 定义

BucketReplica 具体定义为:

// A bucket replica represents [1..N] gradients to be reduced,
// with the same dtype, on the same device.
//
// Batching gradients together before reducing them can result in lower
// overhead and/or faster time to completion. Only gradients of the same type
// and on the same device can be batched. The tensor that represents the
// flattened gradient uses the same type and is placed on the same device.
// Buckets are filled as the gradients they hold are computed (triggered by
// autograd hooks). Buckets are reduced in a predetermined order that is
// identical across processes.
struct BucketReplica {
  // Flattened (1 dimensional) contents of bucket.
  at::Tensor contents; // 这里打平了

  // Views into contents for each grad.  Each view will be created with
  // layout (sizes + strides) matching the grad's expected layout
  // ("Gradient Layout Contract" in torch/csrc/autograd/AccumulateGrad.h).
  // `bucket_views_in[i].copy_(grad)` and
  // `grad.copy_(bucket_views_out[i])`
  // provide convenient ways to move grad data in/out of contents.
  // The reason we keep two states for bucket_views is that if DDP
  // communication hook was registered, `bucket_views_out` could be
  // re-initialized with the value of hook's `future_work`. We still need to
  // keep a separate view reference to replica's original contents for
  // `bucket_views_in[i].copy_(grad)` call.
  std::vector<at::Tensor> bucket_views_in; // 怎么从contents 之中查找
  std::vector<at::Tensor> bucket_views_out; // 一个输出视图

  // Variables that contribute to this bucket replica. Use refcounted value
  // here so that we can easily unflatten the bucket contents into the
  // participating variables after reduction has completed.
  std::vector<at::Tensor> variables;

  // Per-variable offset/length into the flat bucket contents tensor and grad
  // bucket.
  std::vector<size_t> offsets;
  std::vector<size_t> lengths;

  // Per-variable sizes into the grad bucekt.
  std::vector<c10::IntArrayRef> sizes_vec;

  // Number of tensors to be added before this bucket is complete.
  // This is reset to `variables.size()` every iteration.
  size_t pending;

  // TODO(@pietern)
  // Memory copies from gradient tensors into the bucket are potentially
  // done on different CUDA streams. We record an event for every copy
  // so that we can synchronize with them prior to kicking off the reduction.
  // std::vector<at::cuda::CUDAEvent> events;
};

目前为止,逻辑如下,如前所述,每个bucket只有 replicas[0] 有意义。

                                    +-----------------------------------------------------+
+----------------------------+      | +-------+      +----------------------------------+ |
| Reducer                    |      | |Bucket |      |Bucket                            | |
|                            |      | |       |      |                                  | |
|                            |      | |       |      |            Future  future_work   | |
|  vector<Bucket> buckets_ +------> | |       | ...  |                                  | |
|                            |      | |       |      |       ProcessGroup::Work  work   | |
|                            |      | |       |      |                                  | |
|                            |      | |       |      | vector<size_t> variable_indices  | |
|                            |      | |       |      |                                  | |
|                            |      | |       |      |  vector<BucketReplica> replicas  | |
|                            |      | |       |      |                          +       | |
|                            |      | |       |      |                          |       | |
|                            |      | |       |      |                          |       | |
+----------------------------+      | +-------+      +----------------------------------+ |
                                    +-----------------------------------------------------+
                                                                                |
                                                                                |
                                                                                v
                           +--------------------------------------------------------------+
                           | +---------------+       +----------------------------------+ |
                           | |BucketReplica  |       | BucketReplica                    | |
                           | |               |       |                                  | |
                           | |               |       |                                  | |
                           | |               |       |  vector<Tensor> bucket_views_in  | |
                           | |               |  ...  |                                  | |
                           | |               |       |  vector<Tensor> bucket_views_out | |
                           | |               |       |                                  | |
                           | |               |       |  Tensor contents                 | |
                           | |               |       |                                  | |
                           | |               |       |  vector<Tensor> variables        | |
                           | |               |       |                                  | |
                           | |               |       |                                  | |
                           | +---------------+       +----------------------------------+ |
                           +--------------------------------------------------------------+

3.3 初始化

部分初始化的代码在 Reducer::initialize_buckets 之中。

// Allocate bucket contents tensor. 分配内存
replica.contents = at::empty({static_cast<long>(offset)}, options);

initialize_bucket_views(replica, replica.contents);

initialize_bucket_views 具体代码如下,这里需要对几个 PyTorch 函数进行说明。

  • as_strided :依据现有tensor以及给定的步长来创建一个视图(类型仍然为tensor),与原数据共享内存,不存储诗句,所以两个view都不是真实的存储,只是视图。
  • narrow :返回一个新的张量,其是原来张量的缩小版。

initialize_bucket_views 主要逻辑是:

  • 遍历replica的张量,针对每一个张量,依据其是dense还是sparse进行不同处理,最后插入到replica.bucket_views_in之中。

  • 把 replica.bucket_views_out 设置为 replica.bucket_views_in,正常应该是相等的。

  • 如果gradient_as_bucket_view_设置为true,则需要处理两种情况:

    • 当调用 rebuild_buckets 重建 bucket时,initialize_bucket_view 可以在initialize_bucket内调用,如果grad在上一次迭代中已经定义/计算过,则需要将旧的grad复制到新的bucket_view中,并让grad指向新的bucket_view。

    • initialize_bucket_view 也可以在构建时候在 initialize_bucket 内调用。在构建时间内不会定义 Grad,

      在这种情况下,不要让梯度指向bucket_view,因为对于全局未使用的参数,梯度应保持为未定义。

具体代码如下:

// (see Note:  "Gradient Layout Contract" in initialize_buckets).
void Reducer::initialize_bucket_views(
    Reducer::BucketReplica& replica,
    at::Tensor& contents) {
  for (size_t i = 0; i < replica.variables.size(); i++) { // 遍历replica的张量
    auto& v = replica.variables[i];
    const auto offset = replica.offsets[i];
    const auto length = replica.lengths[i];
    if (v.is_non_overlapping_and_dense()) {
      // If the param's memory is dense, match its layout, anticipating
      // the autograd engine (AccumulateGrad) will also create gradients
      // matching its layout.
      replica.bucket_views_in.push_back( // dense类型
          contents.as_strided(v.sizes(), v.strides(), offset));
    } else {
      // Fall back to a C-style contiguous view, again anticipating
      // AccumulateGrad will do the same when stashing grads for non-dense
      // params.
      replica.bucket_views_in.push_back( // sparse类型
          contents.narrow(0, offset, length).view(v.sizes()));
    }
    // By default `bucket_views_out` and `bucket_views_in` are
    // essentially the same thing.
    replica.bucket_views_out = replica.bucket_views_in;

    // If gradient_as_bucket_view_ is set as true, then there are two cases to
    // handle: initialize_bucket_views could be called inside initialize_buckets
    // when rebuild_buckets, if grad has already been defined/calculated in
    // previous iteration, old grad needs to be copied into new bucket_view and
    // let grad point to the new bucket_view, initialize_bucket_views could also
    // be called inside initialize_buckets during construction. Grads are not
    // defined during construction time, in this case, do not let grad point to
    // bucket_view, because grads should be kept as being undefined for globally
    // unused parameters.
    if (gradient_as_bucket_view_) {
      auto& bucket_view = replica.bucket_views_in.back();
      runGradCallbackForVariable(v, [&](auto& grad) {
        if (grad.defined() && !grad.is_alias_of(bucket_view)) {
          bucket_view.copy_(grad);
          grad = bucket_view;
          // 梯度被修改,需要写回去
          // The grad is modefied and needs to be written back.
          return true;
        }
        // 梯度没有被修改,不需要回写
        // The grad is not modified and does not need to be written back.
        return false;
      });
    }
  }
}

具体如下图:

+------------------------------------------+
| BucketReplica                            |
|                                          |
|       vector<Tensor> bucket_views_in +--------------------+
|                                          |                |
|                                          |                |
|       vector<Tensor> bucket_views_out +--------------+    |
|                                          |           |    |
|                                          |           |    |
|                                          |           v    v
|                                          |     +-----+----+--------------------------+
|       Tensor contents  +---------------------> |Flattened (Tensor1, Tensor2, Tensor3)|
|                                          |     +-------------------------------------+
|                                          |
|                                          |
|       vector<Tensor> variables  +------------>  [Tensor1,Tensor2,Tensor3]
|                                          |
|                                          |
|                                          |
+------------------------------------------+

另外,mark_variable_ready_sparse, mark_variable_ready_dense, finalize_backward 都有对 contents 赋值。

0x04 查询类

以下两个类用来让 autograd hook 函数确定张量对应桶。

4.1 VariableIndex

VariableIndex 就是确定某个 tensor 在某个桶中的位置。这个对于 autograd hook 有用。对于autograd hook 回调,回调函数所在进程只是知道自己的梯度张量,但是回调函数需要知道这个张量位于哪个replica,以及位于replica之中哪个位置,这样才能进一步规约。

4.1.1 成员变量

Reducer 等类的实例之中,只有一个 VariableIndex 的成员变量,这个独立成员变量是:

std::vector<VariableIndex> unused_parameters_

VariableIndex 更多是作为其他成员变量的一部分或者参数存在,比如在 Reducer 之中,gradAccToVariableMap_ 就是使用了 VaribaleIndex。

std::unordered_map<torch::autograd::Node*, VariableIndex>
      gradAccToVariableMap_; // 存了grad_accumulator & index 的对应关系,这样以后在 autograd graph 寻找 unused parameters 就方便了

4.1.2 定义

VariableIndex 定义如下:

// Locates a specific variable by replica index and variable index.
struct VariableIndex {
  size_t replica_index; // 位于哪个replica
  size_t variable_index; // variable index,注意,不是"位于replica之中哪个位置",而是所有 varibale的index,比如一共有10个参数,variable_index 的取值是从0~9。那么"位于replica之中哪个位置"由什么来确定?由下面的 VariableLocator 确定。

  VariableIndex() = default;

  VariableIndex(size_t replica_index_, size_t variable_index_) {
    replica_index = replica_index_;
    variable_index = variable_index_;
  }

  static size_t hash(const VariableIndex& key) {
    return c10::get_hash(key.replica_index, key.variable_index);
  }
};

在 Reducer 的构造函数中,有如下代码用于autogrid_hook的设定,这是给每个 replica 上的每个张量设置了一个 hook。如果autograd hook 不知道此梯度对应哪个 bucket,就无法告诉 DDP,这个 bucket 整体ready了。

如何找到桶?需要使用下面的 VariableLocator。

auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index); // 生成了 VariableIndex
        hooks_.emplace_back(
            grad_accumulator->add_post_hook(
                torch::make_unique<torch::autograd::utils::LambdaPostHook>(
                    [=](const torch::autograd::variable_list& outputs,
                        const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
                      this->rpc_context_.set(  
                          ThreadLocalDistAutogradContext::getContextPtr());
#endif
                      this->autograd_hook(index); // Hook的参数是 VariableIndex,目的是为了让 hook 可以顺利找到张量
                      return outputs;
                    })),
            grad_accumulator);

4.2 VariableLoc++ator

4.2.1 定义

VariableLocator 用来在 bucket 之中确定一个varaible。为了找到一个张量位置,我们需要知道在哪个桶,在桶的张量之中的哪个位置。

  • 哪个桶 : bucket_indexReducer.buckets_列表的位置,表示 buckets_ 之上的一个bucket。
  • 桶副本的哪个位置 : intra_bucket_index 是在 bucket.replica 之中 vector 域的 variable index。
// A variable locator locates a particular variable in the bucket
// structure. The `bucket_index` field points to the bucket in the `buckets_`
// vector. The `intra_bucket_index` field points to the index of the variable
// in any of the vector fields in the bucket replica.
struct VariableLocator {
  // Index into the `buckets_` variable.
  size_t bucket_index; // 哪个桶
  // Index of parameter in single bucket replica.
  size_t intra_bucket_index; // 在桶副本的哪个位置

  VariableLocator() = default;

  VariableLocator(size_t bucket_index_, size_t intra_bucket_index_) {
    bucket_index = bucket_index_;
    intra_bucket_index = intra_bucket_index_;
  }
};

4.2.2 成员变量

Reducer 的成员变量为:

// Map the index of a variable to its location in the bucket structure.
std::vector<VariableLocator> variable_locators_;
4.2.2.1 初始化

如何初始化?

void Reducer::initialize_buckets(
    std::vector<std::vector<size_t>> bucket_indices) {
  // Clear current bucket assignment.
  buckets_.clear();
  variable_locators_.clear();
  // Ensure we have a bucket index for every variable.
  variable_locators_.resize(replicas_[0].size());
  
  // Iterate over buckets.
  const auto bucket_count = bucket_indices.size();
  const auto replica_count = replicas_.size();
  buckets_.reserve(bucket_count);
  
  for (size_t bucket_index = 0; bucket_index < bucket_count; bucket_index++) { // 遍历桶  
    // Map participating variables to this bucket.
    // This is identical across replicas so we only need to do this once.
    size_t intra_bucket_index = 0;
    for (const auto variable_index : bucket_indices[bucket_index]) { // 遍历桶里面的张量,所有桶里每个张量index 都是唯一的
      variable_locators_[variable_index] =
          VariableLocator(bucket_index, intra_bucket_index++); // intra_bucket_index 就是递加
    }
	}
}

问题:variable_locators_[variable_index] 在不同的桶之间,不会重复吗?不会,因为 VariableLocator(bucket_index, intra_bucket_index++) 从定义上看,bucket_index 和 intra_bucket_index 的组合是唯一的。

我们给出一个例子。关于 tensor indices,就是给所有的tensor一个index,从0开始递增,一直到 tensors.size()。假如模型的 parameters 一共有12个张量,则 tensor index 从 0 到 11。假如分成 6 个buckets,则在这6个buckets之中,每个 tensor index 都是唯一不重复的。

+-----------------------------------------------------------------------+
|                                                                       |
|  <tensor index 0, tensor index 1, tensor index 2, tensor index 3>     |
|                                                                       |
|                                                                       |
|  <tensor index 4, tensor index 5, tensor 6>                           |
|                                                                       |
|                                                                       |
|  ......                                                               |
|                                                                       |
|                                                                       |
|  <tensor index 16, tensor index 17, tensor index 18, tensor index 19> |
|                                                                       |
+-----------------------------------------------------------------------+

这样,对应的 variable_locators_ 是:

variable_locators_[tensor index 0] =  VariableLocator(bucket 0, 0),即 tensor index 0 属于 bucket 0 的 第一个variable。

variable_locators_[tensor index 1] =  VariableLocator(bucket 0, 1),即 tensor index 1 属于 bucket 0 的 第二个variable。

variable_locators_[tensor index 2] =  VariableLocator(bucket 0, 2),即 tensor index 2 属于 bucket 0 的 第三个variable。

variable_locators_[tensor index 3] =  VariableLocator(bucket 0, 3),即 tensor index 3 属于 bucket 0 的 第四个variable。
4.2.2.2 使用

如何使用?我们用下面做为例子。

当 autograd hook 调用时候,使用 VariableIndex index 来回调,

this->autograd_hook(index)

autograd_hook 最终调用到 mark_variable_ready_dense,这里进而通过 variable_locators_ 来确定桶,然后进行后续操作。

void Reducer::mark_variable_ready_dense(VariableIndex index) {
  const auto replica_index = index.replica_index;
  const auto variable_index = index.variable_index;
  const auto& bucket_index = variable_locators_[variable_index]; // 找到张量对应的桶index
  auto& bucket = buckets_[bucket_index.bucket_index]; // 找到桶
  auto& replica = bucket.replicas[replica_index]; // 再通过桶找到对应的 replica
  auto& variable = replica.variables[bucket_index.intra_bucket_index]; // 找到了张量
  const auto offset = replica.offsets[bucket_index.intra_bucket_index]; // 找到了张量信息
  const auto length = replica.lengths[bucket_index.intra_bucket_index];
  auto& bucket_view = replica.bucket_views_in[bucket_index.intra_bucket_index];

  // 接下来就可以继续处理了
  
  // Copy contents of gradient tensor to bucket tensor.
  // If the gradient is not set, we assume it wasn't computed
  // as part of the current backwards pass, and zero the part
  // of the bucket it would otherwise hold.
  runGradCallbackForVariable(variable, [&](auto& grad) {
    if (grad.defined()) {
      this->check_grad_layout(grad, bucket_view);
      // When gradient_as_bucket_view_ is false, or even when
      // gradient_as_bucket_view_ is true, in rare cases users may set grad to
      // be None after every iteration. In these cases, grad and bucket_view are
      // pointing to different storages and thus need to copy grads to
      // bucket_view. If gradient_as_bucket_view_ is set as true, let grad point
      // to bucket_view. If grad has already been set as views of buckets in
      // previous iterations, no copy is needed.
      if (!grad.is_alias_of(bucket_view)) {
        this->copy_grad_to_bucket(grad, bucket_view);
        if (gradient_as_bucket_view_) {
          // Let grad point to bucket_view buffer.
          grad = bucket_view;
          // The grad is modified and need to be written back.
          return true;
        }
      } else {
        // If grad and bucket view point to the same storage, no need to copy
        if (comm_hook_ == nullptr) {
          bucket_view.div_(divFactor_);
        }
      }
    } else {
      bucket_view.zero_();
    }
    // The grad is not modified and doesn't need to be written back.
    return false;
  });
}

0x05 累积相关类

以下是梯度累积相关类。

5.1 grad_ac++umulators_

grad_accumulators_ 可以认为是一个矩阵,矩阵的每个item就是一个 AccumulateGrad(Node类型),就是用来计算梯度的。目前看来,这里只是一个bookkeeping作用。

std::vector<std::vector<std::shared_ptr<torch::autograd::Node>>>
    grad_accumulators_;

具体如下图,variable1 是一个实际的 张量,grad_accumulators_ 中的一个item 就指向 variable1 的 AccumulateGrad。

                                        variable1 +----+
                                                       |
                                                       |
                                                       v
+-----------------------------------+    +-------------+-----------+
|grad_accumulators_                 |    | Variable                |
|                                   |    |                         |
|                                   |    |   +------------------+  |
| [replica_index][variable_index]+---------->+ AccumulateGrad   |  |
|                                   |    |   |                  |  |
|                                   |    |   |                  |  |
+-----------------------------------+    |   |    post_hooks_+--------> autograd_hook(index)
                                         |   |                  |  |
                                         |   |                  |  |
                                         |   +------------------+  |
                                         |                         |
                                         +-------------------------+

5.1.1 初始化

如何初始化?在 Reducer 构建函数之中有:

  {
    const auto replica_count = replicas_.size();

    // 以下两个for循环会遍历所有的张量
    for (size_t replica_index = 0; replica_index < replica_count;
         replica_index++) {

      for (size_t variable_index = 0; variable_index < variable_count;
           variable_index++) {
        
        auto& variable = replicas_[replica_index][variable_index];
        const auto index = VariableIndex(replica_index, variable_index);

        // The gradient accumulator function is lazily initialized once.
        // Therefore we can use its presence in the autograd graph as
        // evidence that the parameter has participated in an iteration.
        
        auto grad_accumulator = // 得到一个张量的grad_accumulator
            torch::autograd::impl::grad_accumulator(variable);

        // Hook to execute after the gradient accumulator has executed.
        hooks_.emplace_back(
            grad_accumulator->add_post_hook(
                torch::make_unique<torch::autograd::utils::LambdaPostHook>(
                    [=](const torch::autograd::variable_list& outputs,
                        const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
                      this->rpc_context_.set(
                          ThreadLocalDistAutogradContext::getContextPtr());
#endif
                      this->autograd_hook(index);
                      return outputs;
                    })),
            grad_accumulator);

        // Map raw function pointer to replica index and parameter index.
        // This is used later on when the autograd graph is traversed
        // to check for parameters for which no gradient is computed, if
        // find_unused_parameters=True.
        // Note that the mapping of gradient accumulator to variable should be
        // one to one as we deduplicate shared parameters before constructing
        // Reducer.
        if (find_unused_parameters_) {
          gradAccToVariableMap_[grad_accumulator.get()] = index;
        }

        numGradHooksTriggeredMap_[index] = 0;

        // The gradient accumulator is stored as weak_ptr in the autograd
        // metadata of the variable, so we have to keep it alive here for
        // the raw pointer to be valid.
        grad_accumulators_[replica_index][variable_index] =
            std::move(grad_accumulator); // 把这个张量的 grad_accumulator 复制到 grad_accumulators_
      }
    }
  }

5.1.2 使用

grad_accumulator 返回的是 Node,也就是 AccumulateGrad,是一个Node类型,我们取出了检查校验代码。

std::shared_ptr<Node> grad_accumulator(const Variable& self) {
  auto autograd_meta = get_autograd_meta(self);

  std::lock_guard<std::mutex> lock(autograd_meta->mutex_);

  auto result = autograd_meta->grad_accumulator_.lock();
  if (result)
    return result;

  c10::raw::intrusive_ptr::incref(self.unsafeGetTensorImpl());
  auto intrusive_from_this = c10::intrusive_ptr<at::TensorImpl>::reclaim(self.unsafeGetTensorImpl());
  result = std::make_shared<AccumulateGrad>(Variable(std::move(intrusive_from_this)));
  autograd_meta->grad_accumulator_ = result;
  return result;
}

5.2 gradAc++ToVariableMap_

gradAccToVariableMap_ 的定义如下:

std::unordered_map<torch::autograd::Node*, VariableIndex> gradAccToVariableMap_;

作用是给每个 Node 一个对应的VariableIndex,具体如图,下面就给 variable 1 一个 index 1:

                                                        +--------------+
                                                        | Variable     |
                                                  +---> |              |
                                                  |     |              |
                                                  |     +--------------+
                                                  |
                                                  |
+-------------------------------------+           |
| gradAccToVariableMap_               |           |
|                                     |           |
|                                     |           +
|         <Node*, VariableIndex> +---------> [variable1 :index1, variable2 : index2]
|                                     |                     +
|                                     |                     |
|                                     |                     |
+-------------------------------------+                     |
                                                            |
                                                            v
                                                  +---------+-----------------------------+
                                                  |VariableIndex                          |
                                                  |                                       |
                                                  |          replica_index of Variable1   |
                                                  |                                       |
                                                  |          variable_index of Variable1  |
                                                  |                                       |
                                                  +---------------------------------------+

5.2.1 初始化

如何初始化?在 Reducer 构造函数中有如下,就是给每个需要求导的 Varaible 一个VariableIndex。

auto& variable = replicas_[replica_index][variable_index];
const auto index = VariableIndex(replica_index, variable_index);
auto grad_accumulator = torch::autograd::impl::grad_accumulator(variable);

if (find_unused_parameters_) {
  gradAccToVariableMap_[grad_accumulator.get()] = index;
}

5.2.2 使用

gradAccToVariableMap_ 的使用如下,search_unused_parameters 就是遍历查找 gradAccToVariableMap_,如果某一个accumulator 函数没有在 gradAccToVariableMap_ 里面,就说明不用计算梯度。

// Traverse the autograd graph starting at the specified output.
// All parameters for which we have a pointer to their gradient accumulation
// functions, but don't show up in the autograd graph will be marked ready for
// for reduction as soon as the first autograd hook is called. This is not
// done immediately because the model output may be ignored, and we only
// want to start performing reductions on `torch.autograd.backward()`.
void Reducer::search_unused_parameters(
    const std::vector<torch::autograd::Variable>& outputs) {
  std::unordered_set<torch::autograd::Node*> seen;
  std::vector<torch::autograd::Node*> queue;

  // Seed queue with the grad functions of all outputs.
  for (const auto& output : outputs) {
    const auto& grad_fn = output.grad_fn();
    if (grad_fn) {
      queue.push_back(grad_fn.get());
    }
  }

  // Traverse the autograd graph starting at the specified output.
  while (!queue.empty()) {
    auto fn = queue.back();
    queue.pop_back();
    for (const auto& edge : fn->next_edges()) {
      if (auto next_ptr = edge.function.get()) {
        const bool was_inserted = seen.insert(next_ptr).second;
        if (was_inserted) {
          queue.push_back(next_ptr);
        }
      }
    }
  }

  // 遍历查找,如果某一个accumulator 函数没有在这图里面,就说明不用计算梯度
  // Find accumulator functions that don't show up in this graph.
  for (const auto& it : gradAccToVariableMap_) {
    // If the accumulator function is present in the graph, we know
    // a gradient will be computed for the corresponding parameter.
    if (seen.count(it.first) == 0) {
      unused_parameters_.push_back(it.second);
    }
  }
}

5.3 numGradHooksTriggeredMap_

记录在本张量的梯度就绪之前,该张量的 autograd_hook 应该被调用几次。第一次迭代之后,不再增加,所以这个数值应该就是1或者0。用来设置 unused_parameters_ 和 配置 numGradHooksTriggeredMapPerIteration_。

// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// should be triggered before marking this variable's grad as ready for communication.
// Map will not change after 1st iteration.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMap_;

5.3.1 初始化

如何初始化?在构建函数之中有:

numGradHooksTriggeredMap_[index] = 0;

第一次迭代之后,后续调用 autogrid_hook 就递增加一。

// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) {

  // 省略部分代码
  
  if (static_graph_first_iteration()) {
    numGradHooksTriggeredMap_[index] += 1; // 静态图第一次迭代时候,这里会增加1
    return; // 然后直接返回,注意!
  }

  // If `find_unused_parameters_` is true there may be model parameters that
  // went unused when computing the model output, they won't be part of the
  // autograd graph, and won't receive gradients. These parameters are
  // discovered in the `prepare_for_backward` function and their indexes stored
  // in the `unused_parameters_` vector.
  if (!has_marked_unused_parameters_) {
    has_marked_unused_parameters_ = true;
    for (const auto& unused_index : unused_parameters_) {
      mark_variable_ready(unused_index);
    }
  }

  // If it is static graph, after 1st iteration, check a avariable
  // is ready for communication based on numGradHooksTriggeredMap_.
  if (static_graph_after_first_iteration()) {
    if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
      // Finally mark variable for which this function was originally called.
      mark_variable_ready(index); // 
    }
  } else {
    // Finally mark variable for which this function was originally called.
    mark_variable_ready(index);
  }
}

5.3.2 使用

如何使用?这里会reset。

void Reducer::reset_bucket_counting() {
  next_bucket_ = 0;
  // Reset num_buckets_ready_ at the beginning of backward computation
  // in each iteration.
  num_buckets_ready_ = 0;

  for (auto& bucket : buckets_) {
    for (auto& replica : bucket.replicas) {
      replica.pending = replica.variables.size();
    }
    bucket.pending = bucket.replicas.size();
  }

  if (static_graph_) {
    numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
  }
}

这里也会进行处理。如果为0,则插入unused_parameters_。

// Right now delay_all_reduce is only called when static_graph_=true and
// num_iterations_==1.
void Reducer::delay_all_reduce() {

  // 省略部分代码
  
  // copy all gradients to buckets
  for (size_t replica_index = 0; replica_index < replicas_.size();
       replica_index++) {
    for (size_t variable_index = 0; variable_index < replicas_[replica_index].size();
         variable_index++) {
      const auto index = VariableIndex(replica_index, variable_index);
      // set unused_parameters_
      if (numGradHooksTriggeredMap_[index] == 0) { // 如果为0,则插入unused_parameters_
        unused_parameters_.push_back(index);
      }
      require_finalize_ = true;
      set_divide_factor();
      if (expect_sparse_gradients_[replica_index][variable_index]) {
        mark_variable_ready_sparse(index);
      } else {
        mark_variable_ready_dense(index);
      }
    }
  }

  // launch all reduces for all buckets
  for (auto & bucket : buckets_) {
    all_reduce_bucket(bucket);
  }

  finalize_backward();
}

5.4 numGradHooksTriggeredMapPerIteration_

在本张量的梯度就绪之前,该张量的 autograd_hook 还需要被调用几次。如果为0,就说明这个桶应该整体就绪了。

本成员变量是使用 numGradHooksTriggeredMap_ 来重置

// Key: VariableIndex, Value: the number of times that a variable's autograd_hook()
// are left to be triggered before marking this variable's grad as ready for communication.
// Map will change after 1st iteration to track a grad is ready for communication or not.
std::unordered_map<VariableIndex, int, c10::hash<VariableIndex>> numGradHooksTriggeredMapPerIteration_;

5.4.1 使用

如何使用?在静态图情况下,如果不是第一次迭代(此时刚刚产生梯度),就会把 numGradHooksTriggeredMapPerIteration_[index] 递减,如果为0,就说明该变量就绪,可以进行集合操作梯度规约了。

// The function `autograd_hook` is called after the gradient for a
// model parameter has been accumulated into its gradient tensor.
// This function is only to be called from the autograd thread.
void Reducer::autograd_hook(VariableIndex index) {
  
  // 省略其他代码
  
  // If it is static graph, after 1st iteration, check a avariable
  // is ready for communication based on numGradHooksTriggeredMap_.
  if (static_graph_after_first_iteration()) {
    if (--numGradHooksTriggeredMapPerIteration_[index] == 0) {
      // Finally mark variable for which this function was originally called.
      mark_variable_ready(index);
    }
  } else {
    // Finally mark variable for which this function was originally called.
    mark_variable_ready(index);
  }
}

当新一次迭代时候,会重置这个值,prepare_for_backward 会调用到 reset_bucket_counting。

而且是使用 numGradHooksTriggeredMap_ 来重置

void Reducer::reset_bucket_counting() {
  next_bucket_ = 0;
  // Reset num_buckets_ready_ at the beginning of backward computation
  // in each iteration.
  num_buckets_ready_ = 0;

  for (auto& bucket : buckets_) {
    for (auto& replica : bucket.replicas) {
      replica.pending = replica.variables.size();
    }
    bucket.pending = bucket.replicas.size();
  }

  if (static_graph_) {
    numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_;
  }
}

具体逻辑我们展示一下:

  • 对于 张量 2,就没有使用过,所以 delay_all_reduce 方法 之中直接放入到未使用参数。
  • 对于 张量 1:
    • numGradHooksTriggeredMap_ 初始化是 0。
    • 第一次迭代之后变成 1。
    • 后向传播时候,调用 prepare_for_backward 和 reset_bucket_counting,把 numGradHooksTriggeredMap_赋值给 numGradHooksTriggeredMapPerIteration_
    • autograd_hook 之中会递减,然后如果是 0,就设置此变量为 ready,可以规约了。
   Variable 2

                                     delay_all_reduce

   numGradHooksTriggeredMap_[2] = 0  +---------------> unused_parameters_.push_back(0)


+----------------------------------------------------------------------------------------+

   Variable 1



    numGradHooksTriggeredMap_[1] = 0

                   +
                   |
                   |  first_iteration
                   |
                   v

    numGradHooksTriggeredMap_[1] = 1

                   +
                   |  prepare_for_backward
                   |
                   |  reset_bucket_counting
                   v

 numGradHooksTriggeredMapPerIteration_ = numGradHooksTriggeredMap_
                   +
                   |
                   |
                   | backward
                   |
                   | autograd_hook
                   v
                                                               YES
 if (++numGradHooksTriggeredMapPerIteration_[index]=== 0)?? +------->  mark_variable_ready(1)
                   +
                   |  NO
                   |
                   v

5.5 perIterationReadyParams_

每个迭代之中,perIterationReadyParams_ 表示就绪的参数。

// Per iteration set of parameter indices that have been marked ready.
std::unordered_set<size_t> perIterationReadyParams_;

5.5.1 设置

就是如果某个variable是就绪状态,就插入到 perIterationReadyParams_。

void Reducer::mark_variable_ready(VariableIndex index) {

  if (should_rebuild_buckets()) {
    push_rebuilt_params(index);
  }

  const auto replica_index = index.replica_index;
  const auto variable_index = index.variable_index;

  if (replica_index == 0) {
    checkAndRaiseMarkedTwiceError(variable_index);
    perIterationReadyParams_.insert(variable_index);
  }
}

5.5.2 重置

在反向传播之前,会重置这个变量。

void Reducer::prepare_for_backward(
    const std::vector<torch::autograd::Variable>& outputs) {

  // Reset per iteration marked ready parameters.
  perIterationReadyParams_.clear();

}

5.5.3 使用

就是遍历perIterationReadyParams_,如果没找到,就返回。

在 rebuild_buckets 方法中会调用 ensure_prior_reduction_finished,里面会调用这两个方法来校验。

std::vector<std::string> Reducer::getUnmarkedParamsForIteration() {
  std::vector<std::string> unMarkedParamNames;
  for (const auto& it : param_names_) {
    if (perIterationReadyParams_.find(it.first) ==
        perIterationReadyParams_.end()) {
      unMarkedParamNames.push_back(it.second);
    }
  }
  return unMarkedParamNames;
}

std::vector<size_t> Reducer::getUnmarkedParamIndicesForIteration() {
  std::vector<size_t> unmarked_param_indices;
  const auto variable_count = replicas_[0].size();
  for (size_t variable_index = 0; variable_index < variable_count; variable_index++) {
    if (perIterationReadyParams_.find(variable_index) == perIterationReadyParams_.end()) {
      unmarked_param_indices.push_back(variable_index);
    }
  }
  return unmarked_param_indices;
}

5.6 使用过的参数

以下两个变量用来记录本地使用过的参数,其标示在未启用同步的情况下(no_sync is on),在当前迭代或者 no_sync session 之中,这些参数是否在本地被使用过。

每个模型副本对应map中的一个张量,每个张量是参数数量的一维int32(one-dim int32)张量。

这些张量在autograd_hook中标记,以指示已使用了相应的参数。这些张量会在当前迭代或无同步会话(no_sync session)的后向传播结束时进行allreduce,以计算出全局未使用的参数。

// Locally used parameter maps indicating if parameters are used locally
// during the current iteration or no_sync session if no_sync is on. One
// tensor for each model replica and each tensor is one-dim int32 tensor of
// number of parameters. These tensors are marked in autograd_hook to indicate
// the corresponding param has been used, and get allreduced in the end of
// backward of current iteration or no_sync session for figuring out the
// globally unused parameters.
//
// local_used_maps_:     CPU tensors for bookkeeping locally used params
// local_used_maps_dev_: dev tensors for reducing globally unused params
std::vector<at::Tensor> local_used_maps_; // autograd_hook中会设置,对应论文中的
std::vector<at::Tensor> local_used_maps_dev_; // GPU

5.6.1 论文

此处可以结合论文看看。

全局未使用参数(Globally Unused Parameters)的梯度在向前和向后过程中应保持不变。检测未使用的参数需要全局信息,因为在一个DDP过程中,一个参数可能在一次操作中不存在,但可能在另一个过程的同一次迭代中参与训练。因此DDP在位图中维护本地未使用的参数信息,并启动额外的AllReduce以收集全局位图。由于位图比张量尺寸小得多,因此模型中的所有参数共享同一位图,而不是创建每桶位图(per-bucket bitmaps)。位图位于CPU上,以避免为每次更新启动专用CUDA内核。但是,某些ProcessGroup后端可能无法在CPU 张量上运行AllReduce。例如,ProcessGroupNCCL仅支持CUDA张量。此外,由于DDP应该与任何定制的ProcessGroup后端一起工作,它不能假设所有后端都支持CPU张量。为了解决这个问题,DDP在同一设备上维护另一个位图作为第一个模型参数,并调用非阻塞拷贝操作(non-blocking copy)将CPU位图移动到设备位图以进行集合通信

5.6.2 初始化

初始化函数如下:

void Reducer::initialize_local_used_map() {
  const auto replica_count = replicas_.size();
  const auto variable_count = replicas_[0].size();
  local_used_maps_.resize(replica_count);
  local_used_maps_dev_.resize(replica_count);

  for (size_t i = 0; i < replica_count; i++) {
    at::TensorOptions options;
    options = options.dtype(at::kInt);

    // Deliberately don't pin the memory even if local_used_maps_dev_ will
    // be cuda. See Note [local_used_maps_ -> local_used_maps_dev copying]
    local_used_maps_[i] =
        at::zeros({static_cast<long>(variable_count)}, options);

    // This tensor needs to be on the same device as replica because backend
    // such as NCCL may not support CPU tensors, and hence it might not work
    // if we always put it on CPU.
    options = options.device(replicas_[i][0].device());
    local_used_maps_dev_[i] =
        at::empty({static_cast<long>(variable_count)}, options);
  }
}

5.6.3 重置

finalize_bucket_dense 和 finalize_backward 都会重置。

void Reducer::finalize_backward() {
  if (dynamic_graph_find_unused()) {
    // Reset unused parameter accounting.
    // See Note [local_used_maps_ -> local_used_maps_dev copying]
    for (auto& local_used : local_used_maps_) {
      local_used.fill_(0);
    }
    local_used_maps_reduced_ = false;
  }  

5.6.4 设置

autograd_hook 之中如果使用了,就设置为1

void Reducer::autograd_hook(VariableIndex index) {

  // 在这里会记录,已经使用了。	
  // See Note [Skip allreducing local_used_maps_dev]
  if (dynamic_graph_find_unused() || static_graph_first_iteration()) {
    // Since it gets here, this param has been used for this iteration. We want
    // to mark it in local_used_maps_. During no_sync session, the same var can
    // be set multiple times, which is OK as does not affect correctness. As
    // long as it is used once during no_sync session, it is marked as used.
    local_used_maps_[index.replica_index][index.variable_index] = 1;
  }

5.6.5 使用

在 mark_variable_ready 时候会调用到 all_reduce_local_used_map,如果需要同步,这里进行同步。我们还是翻译一下注释:

  • DDP 用异步H2D来避免阻塞开销。异步复制和allreduce 会着眼于当前流,因此将正确排序

  • 关于主机操作的正确顺序也很重要。H2D copy_ 是按流排序的,而主机对 local_used_maps_ 的更改是按主机排序的。

  • 如果大量积压的cuda流工作将 copy_ 操作推迟到将来,并且如果从现在到finalize_backward 之间没有发生阻塞调用,那么finalize_backward 会在流执行复制之前将主机上使用的本地映射重新归零,在这种情况下,copy_会读取到这些零,而不是我们在这里告诉它读取的值。

  • 将 local_used_maps_[i] 复制到pinned临时内存(固定的缓存分配器应该异步提供)可以避免这种恶劣的、罕见的争用情况。

  • 在希望使用所有参数的情况下,从现在到重新调零,DDP本身不会做任何阻塞工作,因此这种危险情况是真实存在的。

  • 所以,Reducer 采用防御性操作,以确保 local_used_maps_tmp 与local_used_maps_[i] 不同。

void Reducer::all_reduce_local_used_map() {
  // See Note [Skip allreducing local_used_maps_dev]
    // H2D from local_used_maps_ to local_used_maps_dev_
    for (size_t i = 0; i < local_used_maps_.size(); i++) {
      if (local_used_maps_dev_[i].is_cuda()) {
        // Note [local_used_maps_ -> local_used_maps_dev copying]
        // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        // We do async H2D to avoid the blocking overhead. The async copy and
        // allreduce respect the current stream, so will be sequenced
        // correctly.
        //
        // Correct sequencing with respect to host operations is also
        // essential. The H2D copy_ is stream ordered, while the host's
        // changes to local_used_maps_ are host ordered. If a large backlog of
        // cuda-stream work pushes the copy_ far into the future, and if no
        // blocking calls occur between now and finalize_backward()** such
        // that finalize_backward() re-zeroes local_used_maps_ on the host
        // before the stream executes the copy_, copy_ will read those zeros
        // instead of the values we thought we told it to read here. Copying
        // local_used_maps_[i] to a pinned temporary (which the pinned caching
        // allocator should supply asynchronously) avoids this nasty, rare
        // race condition.
        //
        // ** In the hoped-for case where all params are used, DDP itself
        // won't do any blocking work between now and the re-zeroing, so the
        // danger is real.
        //
        // Defensively ensures local_used_maps_tmp is distinct from
        // local_used_maps_[i]
        auto local_used_maps_tmp = at::native::empty_like(
            local_used_maps_[i],
            optTypeMetaToScalarType(local_used_maps_[i].options().dtype_opt()),
            local_used_maps_[i].options().layout_opt(),
            local_used_maps_[i].options().device_opt(),
            true /* pinned_memory */);
        // Paranoid asserts here because in some workloads, the pinned
        // allocator behaves in a way we don't understand, and may be bugged.
        // See https://github.com/pytorch/pytorch/pull/54474
        TORCH_INTERNAL_ASSERT(local_used_maps_tmp.is_pinned());
        TORCH_INTERNAL_ASSERT(
            local_used_maps_tmp.data_ptr() != local_used_maps_[i].data_ptr());
        local_used_maps_tmp.copy_(local_used_maps_[i]);
        local_used_maps_dev_[i].copy_(local_used_maps_tmp, true);
      } else {
        local_used_maps_dev_[i].copy_(local_used_maps_[i], true);
      }
    }
    local_used_work_ = process_group_->allreduce(local_used_maps_dev_);
}

5.7 计算梯度支撑类

我们接下来分析一些计算梯度所涉及到的基本函数和支撑类。

5.7.1 Rpc++Context

该类用来封装 distributed::autograd::ContextPtr。

struct RpcContext {
  using ContextPtr = torch::distributed::autograd::ContextPtr;
  // The shared_ptr is to hold the context instance.
  ContextPtr context_ptr_holder;
  std::atomic<ContextPtr::element_type*> context_ptr{nullptr};

  void set(ContextPtr&& new_context_ptr);
};
RpcContext rpc_context_;

5.7.2 hooks_

其作用就是保持了 autograd hook,也是起到了bookkeeping 作用。

std::vector<std::pair<uintptr_t, std::shared_ptr<torch::autograd::Node>>>
    hooks_;

初始化如下:

        // Hook to execute after the gradient accumulator has executed.
        hooks_.emplace_back(
            grad_accumulator->add_post_hook(
                torch::make_unique<torch::autograd::utils::LambdaPostHook>(
                    [=](const torch::autograd::variable_list& outputs,
                        const torch::autograd::variable_list& /* unused */) {
#ifndef _WIN32
                      this->rpc_context_.set(
                          ThreadLocalDistAutogradContext::getContextPtr());
#endif
                      this->autograd_hook(index);
                      return outputs;
                    })),
            grad_accumulator);

5.7.3 c++omm_hook_

5.7.3.1 概念

我们通过 [DDP Communication Hook] 来看看概念。

DDP通信钩子是一种增强功能,它提供了一个钩子,其可用于覆盖DDP来进行跨rank梯度通信,这可用于梯度压缩/GossipGrad等算法。可以使用Python API register_comm_hook来注册钩子函数。

如果未注册DDP通信钩子(DDP communication hook),则reducer只需调用allreduce即可对桶进行规约。如果注册了,则会调用钩子并使用future work handle来处理。如果注册,reducer也会跳过”将梯度除以世界大小(world size)” 这个步骤。这样做的目的是:通信钩子可以完全覆盖我们执行通信的方式,用户可以完全控制如何处理梯度。

PythonCommHookCommHookInterface的子类,其可以注册一个 Python 钩子。此外,还有一些内置的C++钩子实现,可以通过调用Python API register_builtin_comm_hook来指定。

// Note [DDP Communication Hook]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// If DDP communication hook is not registered, the reducer reduces the buckets
// by just calling allreduce. If registered, it calls the hook and uses future
// work handle. If registered, reducer also skips dividing grads by world size.
// The reason for this is that the communication hook is expected to completely
// override how we perform communication and the user should have complete
// control over how the grads are handled.
//
// DDP communication hook is an enhancement that provides a hook which can be
// used to override how DDP communicates gradients across ranks, this can be
// used for algorithms like Gradient Compression/GossipGrad. This hook can be
// registered from Python API using `register_comm_hook`. `PythonCommHook`
// enables registering a Python hook and is a subclass of `CommHookInterface`.
// Additionally, there are also some built-in C++ hook implementations that can
// be specified by calling `register_builtin_comm_hook` from Python API.
5.7.3.2 使用

我们通过 torch/distributed/algorithms/ddp_comm_hooks/default_hooks.py 来看看。

下面的 hook 就是在 all-reduce 前后进行自己的特殊处理。如果使用这个 hook,就使用 ddp_model.register_comm_hook(process_group, fp16_compress_hook)。

def fp16_compress_hook(
    process_group: dist.ProcessGroup, bucket: dist.GradBucket
) -> torch.futures.Future:
    """
    This DDP communication hook implements a simple gradient compression
    approach that casts ``GradBucket`` tensors to half-precision floating-point format (``torch.float16``)
    and then divides it by the process group size.
    It allreduces those ``float16`` gradient tensors. Once compressed gradient
    tensors are allreduced, the chained callback ``decompress`` casts it back to the input data type (such as ``float32``).

    Example::
        >>> ddp_model.register_comm_hook(process_group, fp16_compress_hook)
    """
    group_to_use = process_group if process_group is not None else dist.group.WORLD
    world_size = group_to_use.size()

    compressed_tensor = bucket.get_tensor().to(torch.float16).div_(world_size)

    fut = dist.all_reduce(
        compressed_tensor, group=group_to_use, async_op=True
    ).get_future()

    def decompress(fut):
        decompressed_tensor = bucket.get_tensor()
        # Decompress in place to reduce the peak memory.
        # See: https://github.com/pytorch/pytorch/issues/45968
        decompressed_tensor.copy_(fut.value()[0])
        return [decompressed_tensor]

    return fut.then(decompress)

5.7.4 runGradCallbac++kForVariable

mark_variable_ready_dense 函数会调用到 runGradCallbackForVariable。

5.7.4.1 Reduc++er

Reducer的runGradCallbackForVariable如下,其调用 distributed::autograd::ContextPtr.runGradCallbackForVariable 来处理。

void Reducer::runGradCallbackForVariable(
    at::Tensor& variable,
    GradCallback&& cb) {
  // 加载rpc context
  auto context_ptr = rpc_context_.context_ptr.load();
  if (context_ptr == nullptr) {
    cb(variable.mutable_grad());
  } else {
    // Under distributed autograd
#ifndef _WIN32
    // 下面分析
    context_ptr->runGradCallbackForVariable(variable, std::move(cb));
#endif
  }
}
5.7.4.2 DistAutogradContext

我们顺着来到 DistAutogradContext

它会在累积的梯度之中,在 accumulatedGrads_ 之中找到张量 对应的梯度 grad,然后用传入的回调函数来处理梯度grad,最后把处理后的梯度拷贝回accumulatedGrads_。这样就从 hook获取梯度 开始,到传回规约之后的梯度结束,完成了一个闭环

void DistAutogradContext::runGradCallbackForVariable(
    const torch::autograd::Variable& variable,
    GradCallback&& cb) {
  torch::Tensor grad;
  {
    std::lock_guard<std::mutex> guard(lock_);
    auto it = accumulatedGrads_.find(variable); // 找到张量 对应的梯度 grad
    TORCH_INTERNAL_ASSERT(
        it != accumulatedGrads_.end(),
        "The grad for the variable should exist in dist_autograd context.");
    grad = it->value();
  }
  if (cb(grad)) { // 用传入的回调函数来处理梯度grad
    std::lock_guard<std::mutex> guard(lock_);
    auto device = grad.device();
    // Needs to update the grad in the map.
    accumulatedGrads_.insert_or_assign(variable, std::move(grad)); //最后把处理后的梯度拷贝回accumulatedGrads_
    recordGradEvent(device);
  }
}

DistAutogradContext 的 accumulatedGrads_会记录张量对应的当前梯度。

// DistAutogradContext which stores information for a single distributed
// autograd pass on a worker.
class TORCH_API DistAutogradContext {
 public:
  // Gradients accumulated in this context so far. The key is the variable on
  // which the gradient needs to be accumulated and the value is the gradient
  // that needs to be accumulated on that variable..
  c10::Dict<torch::Tensor, torch::Tensor> accumulatedGrads_;  
}

至此,我们初步介绍了一些基本类,下一章继续介绍(是在是太多了……)。

0xFF 参考

pytorch分布式系列3——分布式训练时,torch.utils.data.distributed.DistributedSampler做了什么?

pytorch分布式系列1——搞清torch.distributed.launch相关的环境变量

pytorch分布式系列2——DistributedDataParallel是如何做同步的?

pytorch(分布式)数据并行个人实践总结——DataParallel/DistributedDataParallel

Pytorch的nn.DataParallel

https://discuss.pytorch.org/t/dataparallel-imbalanced-memory-usage/22551/20

https://pytorch.org/docs/stable/distributed.html

PyTorch 源码解读之分布式训练了解一下?

实操教程|PyTorch AutoGrad C++层实现

PYTORCH 自动微分(一)

PyTorch如何加速数据并行训练?分布式秘籍大揭秘

pytorch分布式训练(二init_process_group)

https://pytorch.org/tutorials/intermediate/ddp_tutorial.html

https://pytorch.org/docs/master/notes/ddp.html

https://pytorch.org/tutorials/intermediate/dist_tuto.html

PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析

Pytorch模型中的parameter与buffer


喜欢 (0)