• 欢迎光临~

代码随想录训练营|Day 24|回溯算法,77

开发技术 开发技术 2022-10-14 次浏览

回溯算法理论基础

代码随想录训练营|Day 24|回溯算法,77

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

回溯是递归的副产品,只要有递归就会有回溯。

回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

组合是不强调元素顺序的,排列是强调元素顺序。

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

组合无序,排列有序

回溯法解决的问题都可以抽象为树形结构

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

代码随想录训练营|Day 24|回溯算法,77

回溯算法中函数返回值一般为void。

什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。

可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

For Future References

文章讲解:https://programmercarl.com/回溯算法理论基础.html

视频讲解:https://www.bilibili.com/video/BV1cy4y167mM/


77. Combinations

Given two integers n and k, return all possible combinations of k numbers chosen from the range [1, n].

You may return the answer in any order.

Example 1:

Input: n = 4, k = 2
Output: [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
Explanation: There are 4 choose 2 = 6 total combinations.
Note that combinations are unordered, i.e., [1,2] and [2,1] are considered to be the same combination.

Example 2:

Input: n = 1, k = 1
Output: [[1]]
Explanation: There is 1 choose 1 = 1 total combination.

Constraints:

  • 1 <= n <= 20
  • 1 <= k <= n

要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题。

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了。

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。

每次搜索到了叶子节点,我们就找到了一个结果。

backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。

backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。

优化过程如下:

  • 已经选择的元素个数:path.size();

  • 还需要的元素个数为: k - path.size();

  • 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> combine(int n, int k) {
        combineHelper(n, k, 1);
        return result;
    }

    /**
     * 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex
     * @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
     */
    private void combineHelper(int n, int k, int startIndex){
        //终止条件
        if (path.size() == k){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){
            path.add(i);
            combineHelper(n, k, i + 1);
            path.removeLast();
        }
    }
}

For Future References

题目链接:https://leetcode.com/problems/combinations/

文章讲解:https://programmercarl.com/0077.组合.html

视频讲解:https://www.bilibili.com/video/BV1ti4y1L7cv/#reply3733925949

程序员灯塔
转载请注明原文链接:代码随想录训练营|Day 24|回溯算法,77
喜欢 (0)
违法和不良信息举报电话:022-22558618 举报邮箱:dljd@tidljd.com